Approximate Computation

アルゴリズム:Algorithms

Protected: Approximate computation of various models in machine learning by Bayesian inference

Approximate computation of various models in machine learning using Bayesian inference for digital transformation, artificial intelligence, and machine learning tasks (structured variational inference, variational inference algorithms, mixture models, conjugate prior, KL divergence, ELBO, evidence lower bound, collapsed Gibbs sampling, blocking Gibbs sampling, approximate inference)
アルゴリズム:Algorithms

Protected: Calculation of Gaussian processes (1) Calculation by the auxiliary variable method

Approximate computation of Gaussian process models, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks, using the partial data method and the auxiliary variable method
アルゴリズム:Algorithms

Protected: Computing Peripheral Probability Distributions – Mean Field Approximation

Application of graphical models to stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks; approximate computation and algorithms for peripheral probability distributions from variational problems using mean field approximation
アルゴリズム:Algorithms

Protected: Variational Bayesian Learning Framework and Algorithms

Overview of variational Bayesian learning and algorithms (variational Bayesian learning, empirical variational Bayesian learning) for approximate computation of complex models in stochastic generative models used in digital transformation, artificial intelligence, and machine learning tasks.
タイトルとURLをコピーしました