Batch Stochastic Optimization

アルゴリズム:Algorithms

Protected: Stochastic coordinate descent as a distributed process for batch stochastic optimization

Stochastic coordinate descent as a distributed process for batch stochastic optimization utilized in digital transformation, artificial intelligence, and machine learning tasks (COCOA, convergence rate, SDCA, γf-smooth, approximate solution of subproblems, stochastic coordinate descent, parallel stochastic coordinate descent, parallel computing process, Communication-Efficient Coordinate Ascent, dual coordinate descent)
アルゴリズム:Algorithms

Protected: Batch Stochastic Optimization – Stochastic Variance-Reduced Gradient Descent and Stochastic Mean Gradient Methods

Batch stochastic optimization for digital transformation, artificial intelligence, and machine learning tasks - stochastic variance reduced gradient descent and stochastic mean gradient methods (SAGA, SAG, convergence rate, regularization term, strongly convex condition, improved stochastic mean gradient method, unbiased estimator, SVRG, algorithm, regularization, step size, memory efficiency, Nekaterov's acceleration method, mini-batch method, SDCA)
アルゴリズム:Algorithms

Protected: Batch Stochastic Optimization – Stochastic Dual Coordinate Descent

Stochastic dual coordinate descent algorithms as batch-type stochastic optimization utilized in digital transformation, artificial intelligence, and machine learning tasks Nesterov's measurable method, SDCA, mini-batch, computation time, batch proximity gradient method, optimal solution, operator norm, maximum eigenvalue , Fenchel's dual theorem, principal problem, dual problem, proximity mapping, smoothing hinge loss, on-line type stochastic optimization, elastic net regularization, ridge regularization, logistic loss, block coordinate descent method, batch type stochastic optimization
アルゴリズム:Algorithms

Protected: Online-type stochastic optimization for machine learning with AdaGrad and minimax optimization

Online stochastic optimization and AdaGrad for machine learning utilized in digital transformation, artificial intelligence, and machine learning tasks, minimax optimization sparsity patterns, training errors, batch stochastic optimization, online stochastic optimization, batch gradient method, minimax optimality, generalization error, Lipschitz continuity, strong convexity, minimax optimal error, minimax error evaluation, first-order stochastic oracle, stochastic dual averaging method, stochastic gradient descent method, regular terms, Nemirovsky, Yudin, convex optimization method, expected error bound, riglets, semidefinite matrix, mirror image descent method, soft threshold functions
アルゴリズム:Algorithms

Protected: Stochastic Optimization and Online Optimization Overview

Stochastic and online optimization used in digital transformation, artificial intelligence, and machine learning tasks expected error, riglet, minimax optimal, strongly convex loss function, stochastic gradient descent, stochastic dual averaging method, AdaGrad, online stochastic optimization, batch stochastic optimization
アルゴリズム:Algorithms

stochastic optimization

Stochastic optimization methods for solving large-scale learning problems on large amounts of data used in digital transformation, artificial intelligence, and machine learning tasks supervised learning and regularization, basics of convex analysis, what is stochastic optimization, online stochastic optimization, batch stochastic optimization, stochastic optimization in distributed environments
タイトルとURLをコピーしました