Conjugate Prior Distribution

アルゴリズム:Algorithms

Protected: Model Building and Inference in Bayesian Inference – Overview and Models of Hidden Markov Models

Model building and inference of Bayesian inference for digital transformation, artificial intelligence, and machine learning tasks - Overview of hidden Markov models and models eigenvalues, hyperparameters, conjugate prior, gamma prior, sequence analysis, gamma distribution, Poisson distribution, mixture models graphical model, simultaneous distribution, transition probability matrix, latent variable, categorical distribution, Dirichlet distribution, state transition diagram, Markov chain, initial probability, state series, sensor data, network logs, speech recognition, natural language processing
アルゴリズム:Algorithms

Protected: Approximate computation of various models in machine learning by Bayesian inference

Approximate computation of various models in machine learning using Bayesian inference for digital transformation, artificial intelligence, and machine learning tasks (structured variational inference, variational inference algorithms, mixture models, conjugate prior, KL divergence, ELBO, evidence lower bound, collapsed Gibbs sampling, blocking Gibbs sampling, approximate inference)
アルゴリズム:Algorithms

Protected: Regret Analysis for Stochastic Banded Problems

Regret analysis for stochastic banded problems utilized in digital transformation, artificial intelligence, and machine learning tasks (sum of equal sequences, gamma function, Thompson extraction, beta distribution, hem probability, Mills ratio, partial integration, posterior sample, conjugate prior distribution, Bernoulli distribution, cumulative distribution function, expected value, DMED measure, UCB measure, Chernoff-Hefding inequality, likelihood, upper bound, lower bound, UCB score, arms)
アルゴリズム:Algorithms

Protected: Overview of Bayesian Estimation with Concrete Examples

Calculate the fundamentals of Bayesian estimation (exchangeability, de Finetti's theorem, conjugate prior distribution, posterior distribution, marginal likelihood, etc.) used in probabilistic generative models for digital transformation, artificial intelligence, and machine learning tasks, based on concrete examples (Dirichlet-multinomial distribution model, gamma-gaussian distribution model).
タイトルとURLをコピーしました