Distributed Data Processing

IOT技術:IOT Technology

Protected: Leveraging Apache Spark for Distributed Data Processing – Developing and Executing Applications

Leveraging Apache Spark to enable distributed data processing for digital transformation, artificial intelligence, and machine learning tasks -Application development and execution (forced termination, yarn-client mode, yarn-cluster mode, YARN, and YARN) management commands, cluster, python, Clojure, Shell, AWS, Glue, sparkplug, spark-shell, spark-submit, Nodemanager, HDFS, Spark applications, Scala, sbt, plugin.sbt, build.sbt build.sbt, build, sbt-assembly plugin, JAR file)
IOT技術:IOT Technology

Introduction and configuration of Apache Spark for distributed data processing

Deployment and configuration of Apache Spark to enable distributed data processing for digital transformation, artificial intelligence and machine learning tasks (NodeManager, YARN, spark-master, ResourceManager, spark-worker, HDFS, NameNode, DataNode, spark-client, CDH5.4, haddop, Yum, CentOS) spark-worker, HDFS, NameNode, DataNode, spark-client, CDH5.4, haddop, Yum, CentOS)
IOT技術:IOT Technology

Protected: Apache Spark’s processing model for distributed data processing

Used for digital transformation artificial intelligence and machine learning tasks Apache Spark's processing model (Executor, Task, Scheduler, Driver Program, Master Node, Worker Node, Spark Standalone, Mesos, Hadoop, HFDS, YARN, Partitions, RDD, Transformations, Actions, Resillient Distributed Dataset)
タイトルとURLをコピーしました