Extension

アルゴリズム:Algorithms

Protected: Extension of the Bandit Problem – Time-Varying Bandit Problem and Comparative Bandit

Time-varying bandit problems and comparative bandits as extensions of bandit problems utilized in digital transformation, artificial intelligence, and machine learning tasks RMED measures, Condorcet winner, empirical divergence, large deviation principle, Borda winner, Coplan Winner, Thompson Extraction, Weak Riglet, Total Order Assumption, Sleeping Bandit, Ruined Bandit, Non-Dormant Bandit, Discounted UCB Measures, UCB Measures, Hostile Bandit, Exp3 Measures, LinUCB, Contextual Bandit
アルゴリズム:Algorithms

Protected: Unsupervised Learning with Gaussian Processes (2) Extension of Gaussian Process Latent Variable Model

Extension of Gaussian process latent variable models as unsupervised learning by Gaussian processes, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learningtasks ,infinite warp mixture models, Gaussian process dynamics models, Poisson point processes, log Gaussian Cox processes, latent Gaussian processes, elliptic slice sampling
アルゴリズム:Algorithms

Protected: Support Vector Machines for Weak Label Learning (2) Multi-Instance Learning

Extension of support vector machines utilized for digital transformation, artificial intelligence, and machine learning tasks; multi-instance learning approach with SVMs for weak-label learning problems (mi-SVM, MI-SVM)
Symbolic Logic

Protected: Statistical Causal Search – Extended Approach

Extension of LiNGAM approach assumptions (linearity, acyclicity, non-Gaussianity) in statistical causal inference used in digital transformation , artificial intelligence , and machine learning tasks
タイトルとURLをコピーしました