Protected: Applied Bayesian inference in non-negative matrix factorization: model construction and inference
Non-negative matrix factorization as a construction and inference of applied Bayesian inference models used in digital transformation, artificial intelligence, and machine learning tasks Poisson distribution, latent variable, gamma distribution, approximate posterior distribution, variational inference, spectogram of organ performance data, missing value interpolation, restoration of high frequency components, super-resolution, graphical models, hyperparameters, modeling, auxiliary variables, linear dimensionality reduction, recommendation algorithms, speech data, Fast Fourier Transform, natural language processing