Narrow Convex Function

アルゴリズム:Algorithms

Protected: Fundamentals of convex analysis in stochastic optimization (1) Convex functions and subdifferentials, dual functions

Convex functions and subdifferentials, dual functions (convex functions, conjugate functions, Young-Fenchel inequality, subdifferentials, Lejandre transform, subgradient, L1 norm, relative interior points, affine envelope, affine set, closed envelope, epigraph, convex envelope, smooth convex functions, narrowly convex functions, truly convex closed functions, closed convex closed functions, execution domain, convex set) in basic matters of convex analysis in stochastic optimization used for Digital Transformation, Artificial Intelligence, Machine Learning tasks.
アルゴリズム:Algorithms

Protected: Information Geometry of Positive Definite Matrices (2) From Gaussian Graphical Models to Convex Optimization

Information geometry of positive definite matrices utilized in digital transformation, artificial intelligence, and machine learning tasks From Gaussian graphical models to convex optimization (chordal graphs, triangulation graphs, dual coordinates, Pythagorean theorem, information geometry, geodesics, sample variance-covariance matrix, maximum likelihood Estimation, divergence, knot space, Riemannian metric, multivariate Gaussian distribution, Kullback-Leibler information measure, dual connection, Euclidean geometry, narrowly convex functions, free energy)
タイトルとURLをコピーしました