proximity gradient method

アルゴリズム:Algorithms

Protected:  Sparse learning based on group L1 norm regularization

Sparse machine learning based on group L1-norm regularization for digital transformation, artificial intelligence, and machine learning tasks relative dual gap, dual problem, gradient descent, extended Lagrangian function, dual extended Lagrangian method, Hessian, L1-norm regularization, and group L1-norm regularization, dual norm, empirical error minimization problem, prox operator, Nesterov's acceleration method, proximity gradient method, iterative weighted reduction method, variational representation, nonzero group number, kernel weighted regularization term, concave conjugate, regenerative kernel Hilbert space, support vector machine, kernel weight Multi-kernel learning, basis kernel functions, EEG signals, MEG signals, voxels, electric dipoles, neurons, multi-task learning
アルゴリズム:Algorithms

Protected: Optimization methods for L1-norm regularization for sparse learning models

Optimization methods for L1-norm regularization for sparse learning models for use in digital transformation, artificial intelligence, and machine learning tasks (proximity gradient method, forward-backward splitting, iterative- shrinkage threshholding (IST), accelerated proximity gradient method, algorithm, prox operator, regularization term, differentiable, squared error function, logistic loss function, iterative weighted shrinkage method, convex conjugate, Hessian matrix, maximum eigenvalue, second order differentiable, soft threshold function, L1 norm, L2 norm, ridge regularization term, η-trick)
タイトルとURLをコピーしました