SDCA

アルゴリズム:Algorithms

Protected: Stochastic coordinate descent as a distributed process for batch stochastic optimization

Stochastic coordinate descent as a distributed process for batch stochastic optimization utilized in digital transformation, artificial intelligence, and machine learning tasks (COCOA, convergence rate, SDCA, γf-smooth, approximate solution of subproblems, stochastic coordinate descent, parallel stochastic coordinate descent, parallel computing process, Communication-Efficient Coordinate Ascent, dual coordinate descent)
アルゴリズム:Algorithms

Protected: Batch Stochastic Optimization – Stochastic Variance-Reduced Gradient Descent and Stochastic Mean Gradient Methods

Batch stochastic optimization for digital transformation, artificial intelligence, and machine learning tasks - stochastic variance reduced gradient descent and stochastic mean gradient methods (SAGA, SAG, convergence rate, regularization term, strongly convex condition, improved stochastic mean gradient method, unbiased estimator, SVRG, algorithm, regularization, step size, memory efficiency, Nekaterov's acceleration method, mini-batch method, SDCA)
アルゴリズム:Algorithms

Protected: Batch Stochastic Optimization – Stochastic Dual Coordinate Descent

Stochastic dual coordinate descent algorithms as batch-type stochastic optimization utilized in digital transformation, artificial intelligence, and machine learning tasks Nesterov's measurable method, SDCA, mini-batch, computation time, batch proximity gradient method, optimal solution, operator norm, maximum eigenvalue , Fenchel's dual theorem, principal problem, dual problem, proximity mapping, smoothing hinge loss, on-line type stochastic optimization, elastic net regularization, ridge regularization, logistic loss, block coordinate descent method, batch type stochastic optimization
タイトルとURLをコピーしました