squared error function

アルゴリズム:Algorithms

Protected: Optimization methods for L1-norm regularization for sparse learning models

Optimization methods for L1-norm regularization for sparse learning models for use in digital transformation, artificial intelligence, and machine learning tasks (proximity gradient method, forward-backward splitting, iterative- shrinkage threshholding (IST), accelerated proximity gradient method, algorithm, prox operator, regularization term, differentiable, squared error function, logistic loss function, iterative weighted shrinkage method, convex conjugate, Hessian matrix, maximum eigenvalue, second order differentiable, soft threshold function, L1 norm, L2 norm, ridge regularization term, η-trick)
タイトルとURLをコピーしました