Strategy

アルゴリズム:Algorithms

Protected: Value Assessment and Policy and Weaknesses in Deep Reinforcement Learning

Value assessment and strategies and weaknesses in deep reinforcement learning used for digital transformation, artificial intelligence, and machine learning tasks poor sample efficiency, difficulty in validating methods as well, impact of implementation practices on performance, library initial values, poor reproducibility, over-training, local optimum, dexterity, TRPO, PPO, continuous value control, image control, policy-based, value-based
アルゴリズム:Algorithms

Protected: Applying Neural Networks to Reinforcement Learning Applying Deep Learning to Strategy:Advanced Actor Critic (A2C)

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Implementation of Advanced Actor Critic (A2C) applying deep learning to strategies (Policy Gradient method, Q-learning, Gumbel Max Trix, A3C (Asynchronous Advantage Actor Critic))
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Policy Gradient, which implements a strategy with a function with parameters.

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Policy Gradient to implement strategies with parameterized functions (discounted present value, strategy update, tensorflow, and Keras, CartPole, ACER, Actor Critoc with Experience Replay, Off-Policy Actor Critic, behavior policy, Deterministic Policy Gradient, DPG, DDPG, and Experience Replay, Bellman Equation, policy gradient method, action history)
python

Protected: the application of neural networks to reinforcement learning(1) overview

Overview of the application of neural networks to reinforcement learning utilized in digital transformation, artificial intelligence and machine learning tasks (Agent, Epsilon-Greedy method, Trainer, Observer, Logger, Stochastic Gradient Descent, Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation Method, Backpropagation, Gradient, Activation Function Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation, Backpropagation, Gradient, Activation Function, Batch Method, Value Function, Strategy)
python

Protected: Implementation of Model-Free Reinforcement Learning in python (3)Using experience for value assessment or strategy update: Value-based vs. policy-based

Value-based and policy-based implementations of model-free reinforcement learning in python for digital transformation, artificial intelligence, and machine learning tasks
バンディッド問題

Theory and Algorithms for the Bandit Problem

The theory and algorithms of the Bandit Problem for selecting optimal strategies to be utilized in digital transformation, artificial intelligence, and machine learning tasks
タイトルとURLをコピーしました