人工知能:Artificial Intelligence

アルゴリズム:Algorithms

保護中: 統計数学理論によるν-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるν-サポートベクトルマシンの概要(カーネル関数、有界性、経験マージン判別誤差、バイアス項なしモデル、再生核ヒルベルト空間、予測判別誤差、一様バウンド、統計的一致性、C-サポートベクトルマシン、対応関係、統計モデルの自由度、双対問題、勾配降下、最小距離問題、判別境界、幾何学的解釈、2値判別、経験マージン判別誤差、経験判別誤差、正則化パラメータ、ミニマックス定理、グラム行列、ラグランジュ関数)
アルゴリズム:Algorithms

保護中: バッチ型確率的最適化の分散処理としての確率的座標降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化の分散処理としての確率的座標降下法(COCOA、収束レート、SDCA、γf-平滑、部分問題の近似解、確率的座標降下法、並列確率的座標降下法、並列計算処理、Communication-Efficient Coordinate Ascent、双対座標降下法)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(1) アルゴリズムの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての準ニュートン法(BFGS公式、ラグランジュ乗数、最適性条件、凸最適化問題、KLダイバージェンス最小化、等式制約付き最適化問題、DFG公式、正定値行列、幾何構造、セカント条件、準ニュートン法の更新則、ヘッセ行列、最適化アルゴリズム、探索方向、ニュートン法)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習の例:ポアソン混合モデルの変分法による推論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習の例:ポアソン混合モデルの変分法による推論(ギブスサンプリング、変分推論、アルゴリズム、ELBO、計算、変分推論アルゴリズム、潜在変数、パラメータ、事後分布、ディリクレ分布、ガンマ分布)
推論技術:inference Technology

保護中: 説明できる人工知能(13)モデル非依存の解釈(Local Surrogate :LIME)

このコンテンツはパスワードで保護されています。閲覧するには以下にパスワードを入力してください。 パスワード:
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient(割引現在価値、戦略更新、tensorflow、Keras、CartPole、ACER、Actor Critoc with Experience Replay、Off-Policy Actor Critic、behaviour policy、Deterministic Policy Gradient、DPG、DDPG、Experience Replay、Bellman Equation、方策勾配法、行動履歴)
Clojure

保護中: Clojure Glitteringを用いたPagerankによるネットワーク解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojure Glitteringを用いたPagerankによるネットワーク解析(ラベルプロパゲーション、Twitterユーザーグループ解析、インフルエンサー、コミュニティ、コミュニティグラフ、アカウント、フォロワー数、ダンピングファクター、ページランクアルゴリズム)
ICT技術:ICT Technology

人工知能技術の理論と数学とアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される人工知能技術の理論と基本的なアルゴリズム(メタヒューリスティック、グラフアルゴリズム、動的計画法、圏論、論理学、数学)
ICT技術:ICT Technology

人工知能技術について

デジタルトランスフォーメション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される人工知能技術について
アルゴリズム:Algorithms

保護中: Exp3.P方策と敵対的多腕バンディット問題の下界の理論概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるExp3.P方策と敵対的多腕バンディット問題の下界の理論概要(累積報酬、Poly INF方策、アルゴリズム、アーベル・ルフィニの定理、Poly INF方策の擬リグレット上界、閉形式、連続微分可能関数、オーディベール、ブベック、INF方策、疑リグレット下界、乱択アルゴリズム、最適オーダーの方策、高確率リグレット上界)
タイトルとURLをコピーしました