2022-11

IOT技術:IOT Technology

ブレインマシンインターフェースの活用とOpenBCI

ブレインマシンインターフェースの活用とOpenBCI(Galea、VR、steam deck、Valve、Steam、EEG、EOG、EMG、EDA、PPG、Panatronix、UX、瞑想、ストレス、島津製作所、NIRS、リハビリテーション、外骨格ロボット、BMI神経リハビリテーション、Blackrock Microsystems, LLC、機能代償型、機能回復型、非侵襲型、fMRI、侵襲型、脳磁場測定、近赤外光計測、NIRD、脳波、脳波センサー、義手)
アルゴリズム:Algorithms

Clojureを用いたニューラルネットと誤差逆伝播法の実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたニューラルネットと誤差逆伝播法の実装
Clojure

マイクロサービスを含めたシステム運用監視の為のElasticStashの活用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスを含めたシステム運用監視の為のElasticStashの活用(Riemann、ロールアップ、スロットル構造、KafKaプラグイン、UTC、timbre、LogStash、log4j、tools.logging、構造化ロギング、一般的なログフォーマット、可視化機能、ダッシュボード、Kibana、パイプライン、UDP、Collectd、RRD、stdin、stdout、ELK Stack、Elastic Stack、Apache Kafka
情報理論/計算理論

情報理論 Math&Science 読書メモ

機械学習技術 人工知能技術 プログラミング技術  デジタルトランスフォーメーション 深層学習 自然言語処理    ITシステム   情報理論&計算機工学 機械学習における数学 「情報理論 Math&Science」より。読書メ...
コンピューター

KI 2019: Advances in Artificial Intelligence論文集より

KI2019 前回はKI2018について述べた。今回は2019年9月23日から26日の間にドイツのカッセルで開催された第42回ドイツ人工知能会議(KI 2019)について述べる。 ...
アルゴリズム:Algorithms

保護中: 正定値行列の情報幾何(2)ガウシアングラフィカルモデルから凸最適化へ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何 ガウシアングラフィカルモデルから凸最適化へ(コーダルグラフ、三角化グラフ、双対座標、ピタゴラスの定理、情報幾何、測地線、標本分散共分散行列、最尤推定、ダイバージェンス、節空間、リーマン計量、多変量ガウス分布、カルバック・ライブラー情報量、双対接続、ユークリッド幾何、狭義凸関数、自由エネルギー)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 -理論的限界とε-貪欲法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 としての理論的限界とε-貪欲法、UCB法、一貫性をもつ方策のリグレット下界、KLダイバージェンス
微分積分:Calculus

保護中: 統計数学理論における仮説集合の複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される統計数学理論における仮説集合の複雑度(ラデマッハ複雑度、VC次元、大数因子、一様大数の法則、決定株、線形判別器の集合、線形関数の集合、コーシー・シュワルツの不等式、イェンセンの不等式、マサールの補題、タラグランドの補題、経験ラデマッハ複雑度、サウアーの補題、ラドンの定理)
アルゴリズム:Algorithms

保護中: 確率的最適化とオンライン最適化の概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに用いられる確率的最適化とオンライン最適化の概要(期待誤差、リグレット、ミニマックス最適、強凸損失関数、確率的勾配降下法、確率的双対平均化法、AdaGrad、オンライン型確率的最適化、バッチ型確率的最適化)
アルゴリズム:Algorithms

保護中: 機械学習における連続最適化のための制約なし最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における連続最適化のための制約なし最適化(機械イプシロン、スケーリングを考慮しない停止条件、スケーリングを考慮した停止条件、テイラーの定理、最適化アルゴリズムの停止条件、ヘッセ行列)
タイトルとURLをコピーしました