人工知能:Artificial Intelligence

アルゴリズム:Algorithms

保護中: グループL1ノルム正則化に基づくスパース学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるグループL1ノルム正則化に基づくスパース機械学習(相対双対ギャップ、双対問題、勾配降下、拡張ラグランジュ関数、双対拡張ラグランジュ法、ヘシアン、L1ノルム正則化、グループL1ノルム正則化、双対ノルム、経験誤差最小化問題、prox作用素、Nesterovの加速法、近接勾配法、繰り返し重み付き縮小法、変分表現、非ゼログループ数、カーネル重み付き正則化項、凹共役、再生核ヒルベルト空間、サポートベクトルマシン、カーネル重み、マルチカーネル学習、基底カーネル関数、EEG信号、MEG信号、ボクセル、電気双極子、ニューロン、マルチタスク学習)
アルゴリズム:Algorithms

保護中: 機械学習における等式制約付き最適化問題の最適性条件

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される制約付き機械学習における等式制約付き最適化問題の最適性条件(不等式制約付き最適化問題、有効制約法、ラグランジュ乗数、1次独立、局所最適解、真凸関数、強双対性定理、ミニマックス定理、強双対性、大域的最適解、2次の最適性条件、ラグランジュ未定乗数法、勾配ベクトル、1次の最適性問題)
アルゴリズム:Algorithms

保護中: 統計数学理論による多値判別の判別適合的損失と各種損失関数への適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論による多値判別の判別適合的損失と各種損失関数への適用(識別モデル損失、判別適合的、狭義順序保存特性、ロジスティックモデル、最尤推定、非負値凸関数、1対他損失、制約付き比較損失、凸非負値関数、ヒンジ損失、ペア比較損失、多値サーポートベクトルマシン、単調非増加関数、予測判別誤差、予測ψ-損失、可測関数)
アルゴリズム:Algorithms

保護中: ガウス混合モデルの変分法と崩壊型ギブスサンプリングによるベイズ推論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるガウス混合モデルの変分法と崩壊型ギブスサンプリングによるベイズ推論(推論アルゴリズム、解析的な積分近似、複雑なモデル、ガウス・ウィシャート分布、クラスタリング、多次元スチューデントのt分布、カテゴリ分布、ポアソン混合モデル、ディリクレ分布、近似事後分布、潜在変数)
ICT技術:ICT Technology

オートマトンと状態遷移/ペトリネット、自動計画と数え上げ問題

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるオートマトンと状態遷移/ペトリネットと自動計画(デジタルゲームAI、空間認識、時間認識、自立型エージェント、C4、階層型FSM、反射AI、FSM、GA、動作ツリー、分散システム、通信プロトコル、データベーストランザクション、並列システム、ワークフローモデル、ビジネスプロセスモデル、デジタル回路、プログラミング言語、自然言語処理、チューリングマシン、プッシュダウンオートマトン、Moore型、Mealy型、決定的FSM、DFSM、決定性有限オートマトン、非決定性有限オートマトン、DFA、NFA)
アルゴリズム:Algorithms

保護中: 説明できる人工知能(16)モデル非依存の解釈(SHAP (SHapley Additive exPlanations))

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される説明できる人工知能としてのSHAPを用いたモデル非依存解釈(scikit-learn、xgboost、LightGBM、tree boosting、R、shapper、 fastshap、TreeSHAP、KernelSHAP、partial dependence plot、permutation feature importance、feature importance、feature dependence、interactions, clustering、summary plots、atomic unit、LIME、決定木、ゲーム理論、クラスタリング、SHAP相互作用値、ALE plot、画像マッピング、一貫性、欠損、局所正確性、効率性 、対称性 、ダミー性、加法性、SHapley Additive exPlanations、ローカルサロゲートモデル)
アルゴリズム:Algorithms

保護中: 深層強化学習における価値評価と戦略と弱点

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される深層強化学習における価値評価と戦略と弱点(サンプル効率の悪さ、手法の検証も難しさ、実装の仕方による性能への影響、ライブラリの初期値、再現性の低さ、過学習、局所最適、器用貧乏、TRPO、PPO、連続値コントロール、画像コントロール、Policyベース、Valueベース)
推論技術:inference Technology

命題論理の充足可能性判定問題(SAT:Boolean SAtisfiability)の概要と実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクにに活用される命題論理の充足可能性判定問題(SAT:Boolean SAtisfiability)の概要と実装(Clojure Rollingstones、Pyhton、PySAT、z3-solver、C++、2-SAT、ゲームAI、自然言語処理の高速化、組合せ最適化問題の効率化、ハイパーパラメータの最適化、コンピュータセキュリティ、ソフトウェア仕様の自動検証、チップ設計の自動検証、zChaff、WalkSAT、GRASP、CryptoMiniSat、MapleSAT、Scavel、PicoSAT、MiniSAT、CaDiCaL、Lingeling、Glucose、P≠NP予想、論理問題)
ICT技術:ICT Technology

DXの事例としての人工知能技術

DX活用に向けた人工知能技術の具体的な適用事例 人工知能技術とは、人間の知能や思考プロセスを模倣することで、コンピューターやロボットなどにこれまで人間が行なっていた知的な作業を行わせる技術を指す。人工知能技...
Large-Scaleデータ

機械学習における並列分散処理

機械学習における並列分散処理 機械学習の学習処理は、大量のデータを扱うため、高速で並列分散処理が必要とされている。並列分散処理は、複数のコンピューターで処理を分散し、同時に複数の処理を行うことで、高速で処理を行うこと...
タイトルとURLをコピーしました