機械学習:Machine Learning

アルゴリズム:Algorithms

機械学習における多言語対応について

機械学習における多言語対応について 機械学習における多言語対応(Multilingual NLP)とは、複数の言語に対応する自然言語処理(NLP)モデルやアプリケーションを開発するための分野であり、機械学習と自然...
python

アンサンブル学習の概要とアルゴリズム及び実装例について

アンサンブル学習について アンサンブル学習(Ensemble Learning)は、機械学習の一種で、複数の機械学習モデルを組み合わせて、より強力な予測モデルを構築する手法となる。単一のモデルよりも複数のモデルを組み合わ...
python

マルコフ決定過程(MDP)の概要とアルゴリズム及び実装例について

マルコフ決定過程(MDP)の概要 マルコフ決定過程(MDP、Markov Decision Process)は、強化学習における数学的なフレームワークであり、エージェントが状態と行動に関連付けられた報酬を受け取る環...
アルゴリズム:Algorithms

SNAP (Stanford Network Analysis Platform)の概要と実装例について

SNAP (Stanford Network Analysis Platform)について SNAPは、Stanford大学のコンピュータサイエンス研究室で開発されたオープンソースのソフトウェアライブラリであり...
python

DenseNetについて

DenseNetについて DenseNet(Densely Connected Convolutional Network)は、2017年にGao Huang、Zhuang Liu、Kilian Q. Weinber...
python

LSTMの概要とアルゴリズム及び実装例について

LSTM(Long Short-Term Memory)について LSTM(Long Short-Term Memory)は、再帰型ニューラルネットワーク(RNN)の一種であり、主に時系列データや自然言語処理(N...
python

モデル予測制御(Model Predictive Control, MPC)の概要とアルゴリズム及び実装例について

モデル予測制御(Model Predictive Control, MPC)の概要 モデル予測制御(Model Predictive Control, MPC)は、制御理論の一手法であり、制御対象のモデルを使用して将来の...
python

ε-グリーディ法(ε-greedy)の概要とアルゴリズム及び実装例について

ε-グリーディ法(ε-greedy)の概要 ε-グリーディ法(ε-greedy)は、強化学習などの探索と活用(exploitationとexploration)のトレードオフを取り扱うためのシンプルで効果的な戦略で...
アルゴリズム:Algorithms

SSD (Single Shot MultiBox Detector)の概要とアルゴリズム及び実装例について

SSD (Single Shot MultiBox Detector)について SSD(Single Shot MultiBox Detector)は、物体検出タスクを行うためのディープラーニングベースのアルゴリズム...
python

Exponential Smoothingの概要とアルゴリズム及び実装例について

Exponential Smoothingについて 指数平滑法(Exponential Smoothing)は、時系列データの予測やデータの平滑化に使用される統計的手法の一つであり、特に、過去の観測値を基に未...
タイトルとURLをコピーしました