機械学習:Machine Learning

アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 尤度に基づく方策(UCBとMED方策)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 尤度に基づくUCB方策とMED方策(MED方策(Indexed Mimimum Empirical Divergence policy)、KL-UCB方策、DMED方策、リグレット上界、ベルヌーイ分布、大偏差原理、Deterministic Minimum Empirical Divergence policy、ニュートン法、KLダイバージェンス、ビンスカーの不等式、ヘフディングの不等式、チェルノフ・ヘフディングの不等式、Upper Confidence Bound)
アルゴリズム:Algorithms

保護中: 統計数学理論における判別適合的損失についての概要

統計数学理論における判別適合的損失についての概要(ランプ損失、凸マージン損失、非凸なΦ-マージン損失、判別適合的、ロバスト・サポートベクトルマシン、判別適合性定理、L2-サポートベクトルマシン、2乗ヒンジ損失、ロジスティック損失、ヒンジ損失、ブースティング、指数損失、凸マージン損失の判別適合性定理、ベイズ規則、予測Φ-損失、予測判別誤差、単調非増加凸関数、経験Φ-損失、経験判別誤差)
アルゴリズム:Algorithms

保護中: 機械学習のためのオンライン型確率的最適化と確率的勾配降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスク活用のための機械学習のための確率的最適化と確率的勾配降下法(ネステロフの加速法、凸関数の最適化を勾配法で解く、ラグランジュの未定乗数法、ユークリッドノルム、収束レート、KLダイバージェンス、指数勾配降下法、ニュートン・ラフソン法、ブレグマンダイバージェンス、確率的鏡像降下法、狭義凸関数、リプシッツ連続、損失関数、射影勾配法、SGD、コーシー・シュワルツの不等式、ミニマックス最適、最急降下法)
アルゴリズム:Algorithms

保護中: 機械学習における最適性条件とアルゴリズムの停止条件

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用される機械学習における最適性条件とアルゴリズムの停止条件(スケーリング、影響、機械イプシロン、アルゴリズム停止条件、反復法、凸最適解、制約付き最適化問題、大域最適解、局所最適解、凸関数、2次の十分条件、2次の必要条件、1次の必要条件)
アルゴリズム:Algorithms

保護中: ガウス過程による教師なし学習(2)ガウス過程潜在変数モデルの拡張

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用であるガウス過程による教師なし学習としてのガウス過程潜在変数モデルの拡張(無限ワープ混合モデル、ガウス過程力学モデル、ポアソン点過程、対数ガウスCox過程、潜在ガウス過程、楕円スライスサンプリング)
python

保護中: モデルフリー強化学習のpythonによる実装(3)経験を価値評価、戦略どちらの更新に利用するか:ValueベースvsPolicyベース

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルフリー強化学習のpythonによる実装ValueベースとPolicyベース(経験を価値評価、戦略どちらの更新に利用するか、Deep Q-Network、深層強化学習、Off-policy Actor Critic、Q-Learning、SARSA、Actor Critic法、Multi-step Learning、TD法、Monte Carlo法、TD(λ)法、Epsilon-Greedy法)
Clojure

保護中: ClojureとHadoopを用いた確率的勾配降下法の実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureとHadoopを用いた確率的勾配降下法の実装(ミニバッチ、Mapper、Reducer、Parkour、Tesser、バッチ勾配降下、結合ステップ、パーティショニング、uberjar、Java、バッチ型勾配降下法、確率的勾配降下法、Hadoopクラスタ、Hadoop分散ファイルシステム、HDFS)
アルゴリズム:Algorithms

Clojureを用いたニューラルネットと誤差逆伝播法の実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたニューラルネットと誤差逆伝播法の実装
アルゴリズム:Algorithms

保護中: 正定値行列の情報幾何(2)ガウシアングラフィカルモデルから凸最適化へ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何 ガウシアングラフィカルモデルから凸最適化へ(コーダルグラフ、三角化グラフ、双対座標、ピタゴラスの定理、情報幾何、測地線、標本分散共分散行列、最尤推定、ダイバージェンス、節空間、リーマン計量、多変量ガウス分布、カルバック・ライブラー情報量、双対接続、ユークリッド幾何、狭義凸関数、自由エネルギー)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 -理論的限界とε-貪欲法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 としての理論的限界とε-貪欲法、UCB法、一貫性をもつ方策のリグレット下界、KLダイバージェンス
タイトルとURLをコピーしました