プログラミング言語:Programming Language

python

準ニュートン法について

準ニュートン法について 準ニュートン法(Quasi-Newton Method)は、非線形最適化問題を解決するための反復法の一つとなる。このアルゴリズムは、ニュートン法の一般化であり、高次導関数(ヘッセ行列)を計算せずに...
ICT技術:ICT Technology

自律的な人工知能を構築するために必要な技術に関する考察

自律的な人工知能技術について 自律的な人工知能技術とは、人工知能が自ら学習し、問題を解決することができる能力を持つ技術であると定義することができる。これらを実現する為には以下のような機能が必要になってくると考え...
python

ランクSVMの概要とアルゴリズム及び実装例

ランクSVMの概要 ランクSVM(Ranking Support Vector Machine)は、順位付けタスクに適用される機械学習アルゴリズムの一種であり、特に情報検索や推薦システムなどの順位付け問題に使用されるものと...
python

Lifted Relational Neural Networks (LRNN)の概要とアルゴリズム及び実装例

Lifted Relational Neural Networks (LRNN)の概要 Lifted Relational Neural Networks(LRNN)は、関係データを扱うためのニューラルネットワ...
python

Post-training Quantizationの概要とアルゴリズム及び実装例について

Post-training Quantizationの概要 Post-training quantization(事後量子化)は、ニューラルネットワークの訓練が終了した後にモデルを量子化する手法であり、この手法では、通常...
python

オルナシュテイン-ウーレンベック過程(Ornstein-Uhlenbeck process)の概要とアルゴリズム及び実装例について

オルナシュテイン-ウーレンベック過程(Ornstein-Uhlenbeck process)の概要 オルナシュテイン-ウーレンベック過程(Ornstein-Uhlenbeck process)は、確率過程の一種であり、特...
python

Limited-memory Broyden–Fletcher–Goldfarb–Shanno(L-BFGS)法について

Limited-memory Broyden–Fletcher–Goldfarb–Shanno(L-BFGS)法について Limited-memory Broyden–Fletcher–Goldfarb–Shanno(L...
python

マルコフ決定過程(MDP)と強化学習を統合したRecursive Advantage Estimationの実装例について

マルコフ決定過程(MDP)と強化学習を統合したRecursive Advantage Estimationについて Recursive Advantage Estimationは、マルコフ決定過程(MDP)と強化学習...
python

GraphRNNの概要とアルゴリズム及び実装例

GraphRNNの概要 GraphRNNは、グラフ生成に特化したディープラーニングモデルで、特にグラフの構造を学習して新しいグラフを生成する能力に優れたものとなる。このモデルは、ノードとエッジのシーケンスを予測...
python

BIC、BDe等のスコアベースの構造学習について

BIC、BDe等のスコアベースの構造学習について BIC(ベイズ情報規準)やBDe(ベイジアン情報規準)などのスコアベースの構造学習手法は、統計モデルの複雑性とデータの適合度を組み合わせてモデルの良さを評価し、最...
タイトルとURLをコピーしました