python

python

Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について

Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的...
python

Boltzmann Explorationの概要とアルゴリズム及び実装例について

Boltzmann Explorationの概要 Boltzmann Explorationは、強化学習において探索と活用のバランスを取るための手法の一つであり、通常、"ε-グリーディ法(ε-greedy)の概要と...
python

AlexNetについて

AlexNetについて AlexNet(アレックスネット)は、2012年に提案されたディープラーニングモデルの一つであり、コンピュータビジョンタスクにおいて画期的な進歩をもたらした手法となる。AlexNetは、"CN...
python

VGGNetについて

VGGNetについて VGGNet(Visual Geometry Group Network)は、2014年に開発された"CNNの概要とアルゴリズム及び実装例について"でも述べている畳み込みニューラルネットワーク(...
python

Sentiment Lexiconsを用いた統計的手法について

Sentiment Lexiconsを用いた統計的手法について Sentiment Lexicons(感情極性辞書)は、単語やフレーズがどれだけ肯定的または否定的であるかを示すための辞書となる。これを使用して統計...
python

SARSAの概要とアルゴリズム及び実装系について

SARSAの概要 SARSA(State-Action-Reward-State-Action)は、強化学習における一種の制御アルゴリズムで、主にQ学習と同じくモデルフリーな手法に分類されたものとなる。SARSAは...
python

画像情報処理を行う為の前処理について

画像情報処理を行う為の前処理について 画像情報処理において、前処理は、モデルの性能や収束速度に大きな影響を与え、画像データをモデルに適した形に変換する重要なステップとなる。以下に、画像情報処理のための前処理手法につい...
python

自然言語処理に必要な前処理とその実装例について

自然言語処理の前処理について 自然言語処理(NLP)の前処理は、テキストデータを機械学習モデルや解析アルゴリズムに適した形に整えるプロセスとなる。機械学習モデルや解析アルゴリズムは、全てのデータに対しても高いパフ...
python

ヘッセ行列と正則性について

ヘッセ行列について ヘッセ行列(Hessian matrix)は、多変数関数の2階偏導関数を行列として表現したものであり、一変数関数の2階導関数が2階導関数として考えられるように、多変数関数の各変数に関する2階偏導関数が...
python

UCB(Upper Confidence Bound)アルゴリズムの概要と実装例

UCB(Upper Confidence Bound)アルゴリズムの概要 "ε-グリーディ法(ε-greedy)の概要とアルゴリズム及び実装例について"で述べているε-greedy法や"ボルツマン分布とソフトマック...
タイトルとURLをコピーしました