アルゴリズム:Algorithms

IOT技術:IOT Technology

保護中: 劣モジュラ最適化を用いた構造正則化学習(1)正則化とp-ノルムの復習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報の最適化手法である劣モジュラ最適化を用いた構造正則化学習を考えるための、スパースモデリング、正則化とp-ノルムの復習
IOT技術:IOT Technology

保護中: 最大流とグラフカット(4)グラフ表現可能な劣モジュラ関数とプリフロー・プッシュ法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化アプローチである劣モジュラ最適化のためのグラフ表現可能な劣モジュラ関数での最大流アルゴリズムとプリフロー・プッシュ法
Symbolic Logic

保護中: 最大流とグラフカット(3) マルコフ確率場における推論とグラフカット

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報最適化手法である劣モジュラ最適化によるグラフ最大流抽出のためのマルコフ確率場における推論とグラフカット
アルゴリズム:Algorithms

保護中: 最大流とグラフカット(2)最大流アルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに用いられる有向グラフの最大フロー問題へのフォード・ファルカーソンのアルゴリズムやゴールドバーグ・タージャンのアルゴリズム、プリフロー・プッシュ法、増加パスアルゴリズム、残余ネットワーク
IOT技術:IOT Technology

保護中: 劣モジュラ関数の最大化と貪欲法の適用(1) 貪欲法の概要と文書要約タスクへの適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法:劣モジュラ関数最大化への貪欲法の適用と文書要約タスクへの活用
アルゴリズム:Algorithms

保護中: 劣モジュラ最適化の基礎(5)ロヴァース拡張と多重線形拡張

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報のアプローチである劣モジュラ最適化の基礎としてのロヴァース拡張と多重線形拡張を用いた劣モジュラ性の解釈
IOT技術:IOT Technology

保護中: 劣モジュラ最適化の基礎(4)基多面体上の線形最適化とノルム最適化によるアプローチ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法の一つである劣モジュラ最適化での基多面体上の線形最適化とノルム最適化による劣モジュラアプローチ
Symbolic Logic

保護中: 劣モジュラ最適化の基礎(3)基多面体の最小ノルム点を利用した劣モジュラ関数最小化問題アルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法(劣モジュラ最適化)の手法の一つである基多面体最小ノルム点を使った劣モジュラ関数最小化問題アルゴリズム
Symbolic Logic

保護中: 劣モジュラ最適化の基礎(1)劣モジュラ関数の定義と具体例

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報最適化アルゴリズムのベースとなる劣モジュラ関数(カバー関数、グラフカット関数、凹関数) と最適化
C/C++

C/C++言語とRustについて

  C/C++言語とRustについて C/C++言語は、マイクロコンピューターから大型コンピューターまで、多くのプラットフォームのアプリケーションで利用されているプログラミング言語となる。Cは構造化プログラミングをベースとした...
タイトルとURLをコピーしました