深層学習:Deep Learning

python

多言語エンベディングの概要とアルゴリズム及び実装について

多言語エンベディングについて 多言語エンベディング(Multilingual Embeddings)は、異なる言語のテキストデータをベクトル空間に埋め込む技術となる。この埋め込みは、テキストデータ内の言語情報を数...
アルゴリズム:Algorithms

Rainbowの概要とアルゴリズム及び実装例について

Rainbowの概要 Rainbow("Rainbow: Combining Improvements in Deep Reinforcement Learning")は、深層強化学習の分野で重要な成果を収めた論文...
python

Dynamic Graph Neural Networks(D-GNN)の概要とアルゴリズム及び実装例について

Dynamic Graph Neural Networks(D-GNN)について Dynamic Graph Neural Networks(D-GNN)は、動的なグラフデータに対処するために設計されたグラ...
python

翻訳モデルの概要とアルゴリズム及び実装例について

機械学習における翻訳モデルについて 機械学習における翻訳モデルは、自然言語処理(NLP)の分野で広く使用されており、ある言語から別の言語へのテキスト翻訳を自動化するために設計されているものとなる。これらのモデルは...
python

SqueezeNetについて

SqueezeNetについて SqueezeNet(スクイーズネット)は、軽量でコンパクトなディープラーニングモデルの一つで、"CNNの概要とアルゴリズム及び実装例について"でも述べている畳み込みニューラルネットワー...
python

方策勾配法の概要とアルゴリズム及び実装例について

方策勾配法について 方策勾配法(Policy Gradient Methods)は、強化学習の一種で、特に方策(ポリシー)の最適化に焦点を当てる手法となる。方策は、エージェントが状態に対してどのような行動を選択すべ...
python

MobileNetについて

MobileNetについて MobileNetは、コンピュータビジョン分野で広く使用されているディープラーニングモデルの一つであり、Googleが開発したモバイルデバイス向けに最適化された軽量で高効率な"CNNの概要...
python

C51 (Categorical DQN)の概要とアルゴリズム及び実装例について

C51 (Categorical DQN)の概要 C51、またはCategorical DQN、は深層強化学習のアルゴリズムであり、価値関数を連続的な確率分布としてモデル化する手法となる。C51は、通常のDQN(D...
python

LeNet-5について

LeNet-5について LeNet-5(LeNet-5)は、ディープラーニングの分野において重要な歴史的なニューラルネットワークモデルの一つであり、"CNNの概要とアルゴリズム及び実装例について"でも述べている畳み込...
python

EfficientNetについて

EfficientNetについて EfficientNet(エフィシエントネット)は、軽量で効率的なディープラーニングモデルの一つであり、畳み込みニューラルネットワーク(CNN)のアーキテクチャとなる。Efficie...
タイトルとURLをコピーしました