深層学習:Deep Learning

python

変分オートエンコーダ (Variational Autoencoder, VAE)の概要とアルゴリズム及び実装例について

変分オートエンコーダ (Variational Autoencoder, VAE)の概要 変分オートエンコーダ(Variational Autoencoder, VAE)は、生成モデルの一種であり、データの潜在表...
python

グラフニューラルネットワークを用いたマルチエージェントシステムの概要と実装例

グラフニューラルネットワークを用いたマルチエージェントシステムの概要 グラフニューラルネットワーク(GNN)を使用したマルチエージェントシステムは、複数のエージェントがグラフ構造で相互作用し、エージェント間の関係...
python

音とリズムとメロディとUX

リズムやメロディーと自律神経 "感情と自律神経と”整う”効果について"でも述べたように、人間の自律神経は感情に大きく影響を与え、自律神経は外部の環境から影響を受ける。 音楽の持つリズムやメロディーは、自律神経へ影...
python

R-GCNの概要とアルゴリズム及び実装例

R-GCNの概要 R-GCN(Relational Graph Convolutional Network)は、グラフデータ上で畳み込み演算を行うニューラルネットワークの一種となる。通常のグラフ畳み込み演算では...
python

HIN2Vec-PCAの概要とアルゴリズム及び実装例

HIN2Vec-PCAの概要 HIN2Vec-PCAは、異種情報ネットワーク(HIN)から特徴を抽出するために、HIN2Vecと主成分分析(PCA)を組み合わせた手法となる。この方法の概要は、以下のように整理で...
python

ミニバッチ学習の概要とアルゴリズム及び実装例

ミニバッチ学習の概要 ミニバッチ学習は、機械学習において広く使用される効率的な学習手法の一つであり、通常の勾配降下法(Gradient Descent)に比べて、計算効率が高く、大規模なデータセットに対しても適用可能なも...
python

価値勾配法の概要とアルゴリズム及び実装例について

価値勾配法の概要 価値勾配法(Value Gradients)は、強化学習や最適化の文脈で使用される手法の一つであり、状態価値やアクション価値といった価値関数に基づいて勾配を計算し、その勾配を使って方策の最適化を行...
python

HIN2Vec-GANの概要とアルゴリズム及び実装例

HIN2Vec-GANの概要 HIN2Vec-GANは、グラフ上の関係を学習するために使われる技術の一つで、具体的には、異種情報ネットワーク(Heterogeneous Information Network,...
python

カーリー・ウィンドウ探索(Curiosity-Driven Exploration)の概要とアルゴリズム及び実装例について

カーリー・ウィンドウ探索(Curiosity-Driven Exploration)の概要 カーリー・ウィンドウ探索(Curiosity-Driven Exploration)は、強化学習においてエージェントが興味...
python

HIN2Vecの概要とアルゴリズム及び実装例

HIN2Vecの概要 HIN2Vec(Heterogeneous Information Network Embedding)は、異種情報ネットワークをベクトル空間に埋め込む手法で、異種情報ネットワークは、複数...
タイトルとURLをコピーしました