人工知能:Artificial Intelligence

python

ベイジアンネットワークの推論アルゴリズムについて

ベイジアンネットワークの推論アルゴリズムについて ベイジアンネットワークの推論は、ベイズの定理に基づいて事後分布を求める過程であり、主要な推論アルゴリズムにはいくつかの種類がある。以下に代表的なベイジアンネッ...
アルゴリズム:Algorithms

安定結婚問題アルゴリズムの概要と実装例及び適用例

安定結婚問題アルゴリズムについて 安定結婚問題(Stable Marriage Problem, SMP)アルゴリズムは、2つのグループ間での「安定したマッチング」を実現するための問題と解法の一種となる。この問題の最も...
アルゴリズム:Algorithms

ランダムフォレストランキングの概要とアルゴリズム及び実装例

ランダムフォレストランキングの概要 ランダムフォレスト(Random Forest)は、機械学習の分野で非常に人気のあるアンサンブル学習法(複数の機械学習モデルを組み合わせることで、個々のモデルよりも優れた性能を得る手法)...
python

グラフニューラルネットワークを用いたアーバンインテリジェンスの概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いたアーバンインテリジェンスの概要 アーバンインテリジェンスは、都市や都市環境におけるデータを収集し、解析して都市の運営やサービスの改善に役立てる技術・概念で、グラフニューラルネ...
python

Noise Contrastive Estimation (NCE)の概要とアルゴリズム及び実装例

Noise Contrastive Estimation (NCE)の概要 Noise Contrastive Estimation (NCE) は、確率モデルのパラメータを推定するための手法であり、特に大...
python

DeepPromptの概要とその利用について

DeepPromptの概要 DeepPromptは、OpenAIが提供するプログラミング支援ツールの1つで、自然言語処理(NLP)モデルを使用して、プログラミングに関する質問やタスクに対する自動コード生成をサポートす...
python

UCT (Upper Confidence Bounds for Trees)の概要とアルゴリズム及び実装例について

UCT (Upper Confidence Bounds for Trees)の概要 UCT(Upper Confidence Bounds for Trees)は、"モンテカルロ木探索の概要とアルゴリズム及び実装例につい...
マルチエージェントシステム

生成系AIを用いてUIを制御する

生成系AIを用いてUIを制御する ユーザーインターフェースのデザインやインタラクションの改善に役立つ手法として生成系AIを用いたUIの制御がある。それらでは以下のようなアプローチがある。 1. プロンプト生...
python

OpenAI Codexの概要とその利用について

OpenAI Codexの概要 OpenAI Codexは、テキストからコードを生成するための自然言語処理モデルで、Codexは、GPTシリーズのモデルをベースにしており、大規模なプログラミングコーパスでトレーニング...
python

グラフニューラルネットワークを用いた建築構造設計の概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた建築構造設計の概要 グラフニューラルネットワーク(GNN)を用いた建築構造設計は、建築物の構造を自動的に生成し、評価するための手法となる。以下にその概要について述べる。 ...
タイトルとURLをコピーしました