グラフ理論

アルゴリズム:Algorithms

保護中: ガウス過程による教師なし学習(2)ガウス過程潜在変数モデルの拡張

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用であるガウス過程による教師なし学習としてのガウス過程潜在変数モデルの拡張(無限ワープ混合モデル、ガウス過程力学モデル、ポアソン点過程、対数ガウスCox過程、潜在ガウス過程、楕円スライスサンプリング)
アルゴリズム:Algorithms

保護中: 正定値行列の情報幾何(2)ガウシアングラフィカルモデルから凸最適化へ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何 ガウシアングラフィカルモデルから凸最適化へ(コーダルグラフ、三角化グラフ、双対座標、ピタゴラスの定理、情報幾何、測地線、標本分散共分散行列、最尤推定、ダイバージェンス、節空間、リーマン計量、多変量ガウス分布、カルバック・ライブラー情報量、双対接続、ユークリッド幾何、狭義凸関数、自由エネルギー)
グラフ理論

保護中: 正定値行列の情報幾何(1)双対的な幾何構造の導入

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何としての双対的な幾何構造の導入(リーマン計量、接ベクトル空間、半正定値計画問題、自己平衡性、レビ-チビタ接続、リーマン幾何、測地線、ユークリッド幾何、∇-測地線、接ベクトル、テンソル量、双対平坦性、正定値行列集合)
アルゴリズム:Algorithms

保護中: 統計数学理論の基本的枠組み

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論の基本的枠組み(正則化、近似誤差と推定誤差、へフディングの不等式、予測判別誤差、統計的一致性、学習アルゴリズム、性能評価、ROC曲線、AUC、ベイズ規則、ベイズ誤差、予測損失、経験損失)
アルゴリズム:Algorithms

保護中: ガウス過程の空間統計学、ベイズ最適化への適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用としてのガウス過程の空間統計学、ベイズ最適化への適用(ARD,Maternカーネル)のツール(GPyOptやGPFlowやGPyTorch)
Clojure

Hierarchical Temporal Memory (階層型時間メモリ)とClojure

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される階層型時間メモリとClojureによる疎分散表現を使った深層学習
Clojure

Clojureを用いたネットワーク解析(1) 幅優先/深さ優先探索・最短経路探索・最小スパニング木・サブグラフと連結成分

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに用いられるClojure/loomを用いたネットワーク解析、幅優先/深さ優先探索・最短経路探索・最小スパニング木・サブグラフと連結成分
Symbolic Logic

論理やルールと確率/機械学習の融合

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される論理やルールと機械学習の融合(帰納論理プログラミング、統計関係学習、知識ベースモデル構築、ベイジアンネット、確率論理学習、隠れマルコフモデル)
アルゴリズム:Algorithms

保護中: グラフィカルモデルの構造学習

ベイジアンネットワークやマルコフ確率場でグラフ構造をデータから学習する方法について(Max-Min Hill Climbming(MMHC)、Chow-Liuのアルゴリズム、スコア関数を最大化する方法、PC(Peter Spirtes and Clark Clymoir)アルゴリズム、GS(Grow-Shrink)アルゴリズム、SGS(Spietes Glymour and Scheines)アルゴリズム、スパース正則化、独立性条件)
アルゴリズム:Algorithms

保護中: 格子状補助点配置に基づくガウス過程の計算方法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用される確率的生成モデルの応用であるガウス過程モデルにおける格子状補助点配置に基づくガウス過程法計算(クロネッカー法、テブリッツ法、局所的カーネル補間、KISS-GP法)
タイトルとURLをコピーしました