最適化:Optimization

アルゴリズム:Algorithms

データの幾何学的アプローチ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるデータの幾何学的アプローチ(物理学、量子情報、オンライン予測、ブレグマン・ダイバージェンス、フィッシャー情報行列、ベーテ自由エネルギー関数、ガウシアングラフィカルモデル、半正定値計画問題、正定値対称行列、確率分布、双対問題、トポロジカル、柔らかい幾何学、位相幾何学、量子情報幾何、ワッサースタイン幾何、ルピナー幾何、統計幾何学)
アルゴリズム:Algorithms

トポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるトポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング(文字認識への適用、クラスタリングへの適用、R、TDA、バーコードプロット、パーシステントプロット、python、scikit-tda、Death - Birth、ノイズのあるデータの解析、アルファ複体、ヴィートリス・リップス複体、チェック複体、位相的データ解析、タンパク質の解析、センサーデータ解析、自然言語処理、柔らかい幾何、硬い幾何、情報幾何、ユークリッド空間)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 確率一致法とトンプソン抽出

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 確率一致法とトンプソン抽出(最悪時リグレット最小化、問題依存リグレット最小化、最悪時リグレット上界、問題依存リグレット、最悪時リグレット、MOSS方策、標本平均、補正項、UCBのリグレット上界、敵対的バンディット問題、トンプソン抽出、ベルヌーイ分布、UCB方策、確率的一致法、確率的バンディット、ベイズ統計、KL-UCCB方策、ソフトマックス方策、チェルノフ・ヘフディングの不等式)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としてのカーネル関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としてのカーネル関数(ガウシアンカーネル、多項式カーネル、線形カーネル、カーネル関数、回帰関数、線形モデル、回帰問題、判別問題)
アルゴリズム:Algorithms

保護中: 勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法、確率的最適化、多層パーセプトロン、アダブースト、ブースティング、ウルフ条件、ゾーテンダイク条件、アルミホ条件、バックトラッキング法、ゴールドシュタイン条件、強ウルフ条件)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習 – 混合モデルとデータ生成過程と事後分布

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用されるベイズ推論による機械学習での混合モデルとデータ生成過程と事後分布(グラフィカルモデル、ポアソン分布、ガウス分布、ディリクレ分布、カテゴリ分布)
python

保護中: 強化学習に対するニューラルネットワークの適用(1)概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用の概要(Agent、Epsilon-Greedy法、Trainer、Observer、Logger、確率的勾配降下法、Stochastic Gradient Descent、SGD、Adaptive Moment Estimation、Adam、Optimizer、誤差逆伝搬法、Backpropagation、勾配、活性化関数、バッチ法、価値関数、戦略)
アルゴリズム:Algorithms

アンサンブル法による機械学習 -基礎とアルゴリズム 読書メモ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアンサンブル法による機械学習での基礎とアルゴリズム(クラス不均衡学習、コスト考慮型学習、アクティプラーニング、半教師あり学習、類似性に基づく手法、クラスタリングアンサンブル法、グラフに基づく手法、祭ラベルに基づく手法、変換に基づく手法、クラスタリング、最適化に基づく枝刈り、アンサンブル枝刈り、結合法、バギング、ブースティング)
アルゴリズム:Algorithms

保護中: 正定値行列の情報幾何(3)計算の手順と曲率

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何としての計算の手順と曲率(双対ギャップ、アフィン微分幾何、ヘッセ幾何、ガウシアングラフィカルモデル、偏微分方程式論、確率論、線形計画問題、正定値対称行列、半正定値計画問題、予測子・修正子法、多項式時間アルゴリズム、幾何情報的量、ニュートン法、中心曲線、内点法、主内点法、双対内点法、主双対内点法、近似最適解、アフィン空間、ポテンシャル関数)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 尤度に基づく方策(UCBとMED方策)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 尤度に基づくUCB方策とMED方策(MED方策(Indexed Mimimum Empirical Divergence policy)、KL-UCB方策、DMED方策、リグレット上界、ベルヌーイ分布、大偏差原理、Deterministic Minimum Empirical Divergence policy、ニュートン法、KLダイバージェンス、ビンスカーの不等式、ヘフディングの不等式、チェルノフ・ヘフディングの不等式、Upper Confidence Bound)
タイトルとURLをコピーしました