最適化:Optimization

python

Quantization-Aware Trainingの概要とアルゴリズム及び実装例について

Quantization-Aware Trainingの概要 Quantization-Aware Training(QAT)は、ニューラルネットワークを効果的に量子化(Quantization)するための訓練手法の一つ...
python

修正されたニュートン法について

修正されたニュートン法について 修正されたニュートン法(Modified Newton Method)は、通常のニュートン-ラフソン法を改良して、いくつかの課題に対処するために開発されたアルゴリズムで、修正されたニュート...
アルゴリズム:Algorithms

Temporal Fusion Transformerの概要とアルゴリズム及び実装例

Temporal Fusion Transformerの概要 Temporal Fusion Transformer (TFT) は、複雑な時系列データを扱うために開発されたディープラーニングモデルで、リッチ...
python

予測制約法(Predictive Control with Constraints)の概要とアルゴリズム及び実装例

予測制約法(Predictive Control with Constraints)の概要 予測制約法(Predictive Control with Constraints)は、制約条件を満たしながらシステムの将来の挙動...
python

整数線形プログラミング(ILP)による最適化の概要とアルゴリズム及び実装例について

整数線形プログラミング(ILP)による最適化の概要 整数線形プログラミング(Integer Linear Programming, ILP)は、数学的な最適化問題を解くための手法の一つであり、特に制約条件の下で整数解を求...
アルゴリズム:Algorithms

逐次二次計画法について

逐次二次計画法について 逐次二次計画法(Sequential Quadratic Programming, SQP法)は、非線形制約を持つ非線形最適化問題を解くための反復型の最適化アルゴリズムであり、SQP法は制約つき最...
python

Block K-FACの概要とアルゴリズム及び実装例について

Block K-FACの概要 Block K-FAC(Block Kronecker-factored Approximate Curvature)は、深層学習モデルの最適化において使用される一種のカーブチャート...
アルゴリズム:Algorithms

フランク・ウォルフ法の概要と適用事例及び実装例

フランク・ウォルフ法の概要 フランク・ウォルフ法(Frank-Wolfe method)は、1956年にマルグリート・フランクとフィリップ・ウォルフによって提案された、非線形最適化問題を解くための数値計算アルゴリズムとな...
python

フィッシャー情報行列の概要と関連アルゴリズム及び実装例について

フィッシャー情報行列の概要 フィッシャー情報行列(Fisher information matrix)は、統計学と情報理論の分野で使用される概念であり、確率分布に関する情報を提供する行列となる。この行列は、統計モデルのパ...
アルゴリズム:Algorithms

フロベニウスノルムの概要とアルゴリズム及び実装例

フロベニウスノルムの概要 フロベニウスノルムは、行列のノルムの一種であり、行列の要素の2乗和の平方根として定義されるものとなる。これは、行列 \( A \) のフロベニウスノルム \( ||A||_F \...
タイトルとURLをコピーしました