最適化:Optimization

python

共役勾配法について

共役勾配法について 共役勾配法(Conjugate Gradient Method)は、連立線形方程式の解法や非線形最適化問題の解法に使用される数値計算アルゴリズムであり、共役勾配法は特に大規模な連立線形方程式の解法に効...
python

線形計画法の概要とアルゴリズム及び実装例について

線形計画法の概要 線形計画法(Linear Programming, LP)は、線形関数を最適化(最大化または最小化)する問題を解く数学的手法であり、多くの最適化問題に適用され、特に資源配分、スケジューリング、輸送計画など...
python

信頼性反復法 (Trust-Region Methods)法の概要とアルゴリズム及び実装例

信頼性反復法 (Trust-Region Methods)法の概要 信頼性反復法(Trust-Region Methods)は、非線形最適化問題を解くためのアルゴリズムの一つで、勾配降下法や"ニュートン法の概要とアルゴリ...
python

ペナルティ関数法の概要とアルゴリズム及び実装例

ペナルティ関数法の概要 ペナルティ関数法(Penalty Function Method)は、制約付き最適化問題を制約なし最適化問題に変換する手法で、これにより、既存の制約なし最適化アルゴリズム(例えば、勾配法や"ニュー...
python

NSGA-II(Non-dominated Sorting Genetic Algorithm II)の概要とアルゴリズム及び実装例

NSGA-II(Non-dominated Sorting Genetic Algorithm II)の概要 NSGA-II(Non-dominated Sorting Genetic Algorithm II)は、多目的...
python

ニュートン法での特異点への対処方法について

ニュートン法での特異点への対処方法について "ニュートン法の概要とアルゴリズム及び実装について"でも述べているニュートン法は、非線形方程式の解を求めるための強力な手法だが、特異点(例: ヤコビ行列が特異または近似特異にな...
python

ニュートン法の導関数の計算における数値微分の代替手法について

ニュートン法の導関数の計算における数値微分の代替手法について ニュートン法では、関数\(f(x)\)の根を求めるために導関数\(f'(x)\)を用いるが、解析的に導関数を求めるのが難しい場合や、関数が数値的にしか与えられ...
python

ニュートン法のリスケーリングについて

ニュートン法のリスケーリングについて ニュートン法のリスケーリングは、数値最適化において収束速度を改善したり、特異点や局所最適解に関する問題を回避するために使用される手法の一つであり、リスケーリングは、最適化の計算過程で...
python

ニュートン法での線形収束を改善する方法について

ニュートン法での線形収束を改善する方法について "ニュートン法の概要とアルゴリズム及び実装について"でも述べているニュートン法は、特に凸最適化問題や非線形方程式の解法において非常に有力な手法だが、収束速度が線形にとどまる...
アルゴリズム:Algorithms

遺伝的アルゴリズムの概要と適用事例および実装例について

遺伝的アルゴリズムについて 遺伝的アルゴリズム(Genetic Algorithm, GA)は、進化的計算の一種で、自然界の進化プロセスを模倣して問題の最適化を行うための最適化アルゴリズムであり、最適化、探索、機械学習、...
タイトルとURLをコピーしました