ベイズ推定

python

ディリクレ過程(Dirichlet Process, DP)の概要とアルゴリズム及び実装例について

ディリクレ過程(Dirichlet Process, DP)の概要 ディリクレ過程(Dirichlet Process, DP)は、無限次元の確率分布を扱うための強力な道具で、ベイズ非パラメトリックモデルの中心的...
アルゴリズム:Algorithms

隠れマルコフモデルと状態空間モデルの相違点について

隠れマルコフモデルと状態空間モデルの相違点について "隠れマルコフモデルの概要と各種応用事例および実装例"で述べている隠れマルコフモデル(Hidden Markov Model, HMM)と"状態空間モデルの概要...
python

ダイナミックベイジアンネットワーク(DBN)の概要とアルゴリズム及び実装例について

ダイナミックベイジアンネットワーク(Dynamic Bayesian Network、DBN) ダイナミックベイジアンネットワーク(Dynamic Bayesian Network、DBN)は、ベイジアンネッ...
python

動的ベイジアンネットワークの変分ベイズ法による解析

動的ベイジアンネットワークの変分ベイズ法による解析 動的ベイジアンネットワーク(DBN)は、時間の経過とともに変化する不確かさをモデリングするためのベイジアンネットワークの一種となる。変分ベイズ法は、複雑な確...
python

ベイジアン多変量統計モデリングの概要とアルゴリズム及び実装例について

ベイジアン多変量統計モデリングの概要 ベイジアン多変量統計モデリングは、ベイジアン統計学の枠組みを使用して、複数の変数(多変量)を同時にモデル化する手法であり、この手法は、観測データに対する確率的な構造を捉え、不...
python

制約ベースの構造学習の概要とアルゴリズム及び実装例について

制約ベースの構造学習について 制約ベースの構造学習は、グラフィカルモデル(ベイジアンネットワークやマルコフランダムフィールドなど)において、特定の構造制約を導入してモデルの学習を行う手法であり、これにより、事前の...
python

ディリクレ過程混合モデル(Dirichlet Process Mixture Model, DPMM)の概要とアルゴリズム及び実装例について

ディリクレ過程混合モデル(Dirichlet Process Mixture Model, DPMM)の概要 ディリクレ過程混合モデル(Dirichlet Process Mixture Model, DPMM)...
python

BIC、BDe等のスコアベースの構造学習について

BIC、BDe等のスコアベースの構造学習について BIC(ベイズ情報規準)やBDe(ベイジアン情報規準)などのスコアベースの構造学習手法は、統計モデルの複雑性とデータの適合度を組み合わせてモデルの良さを評価し、最...
python

ベイジアンネットワークのサンプリングについて

ベイジアンネットワークのサンプリング(Sampling)について ベイジアンネットワークのサンプリングは、事後分布からのランダムサンプル生成を通じて、未知の変数やパラメータの確率的な挙動をモデル化するもので、...
python

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)の概要とアルゴリズム及び実装例について

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)について Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)は、ハミル...
タイトルとURLをコピーしました