集合論:Set theory

IOT技術:IOT Technology

画像認識システムの概要と実装

画像認識システムの概要 画像認識システムは、コンピュータが画像を解析し、その中に含まれるオブジェクトや特徴を自動的に識別する技術となる。このシステムでは、画像処理、パターン認識、機械学習、ディープラーニングなどの様々...
アルゴリズム:Algorithms

保護中: 説明できる機械学習(17)反事実的説明 (Counterfactual Explanations)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される反事実的説明による機械学習結果の説明(Anchor、Growing Spheresアルゴリズム、Python、Alibi、カテゴリカル特徴量、羅生門効果、LIME、全結合型ニューラルネット、反事実生成アルゴリズム、ユークリッド距離、中央絶対偏差、Nelder-Mead法、因果意味論、原因)
アルゴリズム:Algorithms

保護中: グループL1ノルム正則化に基づくスパース学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるグループL1ノルム正則化に基づくスパース機械学習(相対双対ギャップ、双対問題、勾配降下、拡張ラグランジュ関数、双対拡張ラグランジュ法、ヘシアン、L1ノルム正則化、グループL1ノルム正則化、双対ノルム、経験誤差最小化問題、prox作用素、Nesterovの加速法、近接勾配法、繰り返し重み付き縮小法、変分表現、非ゼログループ数、カーネル重み付き正則化項、凹共役、再生核ヒルベルト空間、サポートベクトルマシン、カーネル重み、マルチカーネル学習、基底カーネル関数、EEG信号、MEG信号、ボクセル、電気双極子、ニューロン、マルチタスク学習)
アルゴリズム:Algorithms

保護中: L1ノルム正則化のための最適化手法としての双対拡張ラグランジュ法・双対交互方向乗数法

デジタルトランスフォーメーショ(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース学習でのL1ノルム正則化のための最適化手法(FISTA、SpaRSA、OWLQN、DL法、L1ノルム、チューニング、アルゴリズム、DADMM、IRS、ラグランジュ乗数、近接点法、交互方向乗数法、勾配上昇法、拡張ラグランジュ法、ガウス・サイデル法、連立一次方程式、制約付きノルム最小化問題、コレスキー分解、交互方向乗数法、双対拡張ラグランジュ法、相対双対ギャップ、ソフト閾値関数、へシアン行列)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(2)記憶制限付き準ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての記憶制限付き準ニュートン法(疎クリーク分解、sparse clique factorization、コーダルグラフ、疎性、セカント条件、疎ヘッセ行列、DFP公式、BFGS公式、KLダイバージェンス、準ニュートン法、極大クリーク、正定値行列、正定値行列補完、positive define matrix composition、グラフの三角化、完全部分グラフ、クリーク、ヘッセ行列、3重対角行列、Hestenes-Stiefel法、L-BFGS法)
アルゴリズム:Algorithms

保護中: バンディット問題における最適腕識別とA/Bテスト(1)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバンディット問題における最適腕識別とA/Bテスト(ヘフディングの不等式、最適腕識別、標本複雑度、sample complexity、リグレット最小化、累積リグレット最小化、累積報酬最大化、ε-最適腕識別、単純リグレット最小化、ε-最適腕識別、ε-best arm identification、KL-UCB方策、KLダイバージェンス、正規分布のA/Bテスト、固定信頼度、fixed confidence)
アルゴリズム:Algorithms

保護中: 統計数学理論によるν-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるν-サポートベクトルマシンの概要(カーネル関数、有界性、経験マージン判別誤差、バイアス項なしモデル、再生核ヒルベルト空間、予測判別誤差、一様バウンド、統計的一致性、C-サポートベクトルマシン、対応関係、統計モデルの自由度、双対問題、勾配降下、最小距離問題、判別境界、幾何学的解釈、2値判別、経験マージン判別誤差、経験判別誤差、正則化パラメータ、ミニマックス定理、グラム行列、ラグランジュ関数)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(1) アルゴリズムの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての準ニュートン法(BFGS公式、ラグランジュ乗数、最適性条件、凸最適化問題、KLダイバージェンス最小化、等式制約付き最適化問題、DFG公式、正定値行列、幾何構造、セカント条件、準ニュートン法の更新則、ヘッセ行列、最適化アルゴリズム、探索方向、ニュートン法)
Clojure

保護中: Clojure Glitteringを用いたPagerankによるネットワーク解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojure Glitteringを用いたPagerankによるネットワーク解析(ラベルプロパゲーション、Twitterユーザーグループ解析、インフルエンサー、コミュニティ、コミュニティグラフ、アカウント、フォロワー数、ダンピングファクター、ページランクアルゴリズム)
アルゴリズム:Algorithms

保護中: オンライン型確率的最適化の分散処理

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるオンライン型確率的最適化の分散処理(期待誤差、ステップサイズ、エポック、強凸期待誤差、SGD、リプシッツ連続、γ-平滑、α-強凸、Hogwild!、並列化、ラベル伝搬法、グラフ上での伝搬、スパースな特徴ベクトル、非同期型分散SGD、ミニバッチ法、確率的最適化手法、勾配の分散、不偏推定量、SVRG、勾配法のミニバッチ並列化、ネステロフの加速法、並列化SGD)
タイトルとURLをコピーしました