機械学習:Machine Learning

Symbolic Logic

保護中: LiNGAM(3)LiNGAMモデルの推定(1)独立成分分析と回帰分析を用いたアプローチ

デジタルトランスフォーメーション(DX)、人工知能(AI)タスク適用のための確率的因果探索のための独立成分分析(ハンガリアン法)と回帰分析(適応型Lasso)を用いたLiNGAMモデルの推定
グラフ理論

保護中: LiNGAM(2)LiNGAMモデルの理論

統計的因果探索のためのセミパラメトリックアプローチであるLiNGAMによる独立成分分析モデルをベースとした因果構造方程式モデルでの係数行列の推論
アルゴリズム:Algorithms

保護中: LiNGAM(1)独立成分分析について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのためのLiNGAMモデルを理解する為の独立成分分析という信号処理技術について
最適化:Optimization

機械学習プロフェッショナルシリーズ-ノンパラメトリックベイズ 点過程と統計的機械学習の数理 読後メモ

サマリー ノンパラメトリックベイズとは、ベイズ統計学の一手法であり、データ自体から確率モデルを構築し、データを生成する真の確率分布を仮定する代わりに、データから確率分布を推定することができるものとなる。これにより、デー...
Symbolic Logic

保護中: 統計的因果探索の基礎(3)因果的マルコフ条件、忠実性、PCアルゴリズム、GESアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための統計的因果探索の基礎での因果的マルコフ条件、忠実性、制約に基づくアプローチ(PCアルゴリズム、FCIアルゴリズムと巡回性のある場合のCCDアルゴリズム)、スコアに基づくアプローチ(ベイズ情報量基準(BIC)、GESアルゴリズム)
グラフ理論

保護中: 統計的因果探索の基礎(2)3つのアプローチの識別可能性

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクの為の統計的因果探索の基礎の為の3つのアプローチの識別可能性(構造方程式モデルの行列表現と有向非巡回グラフ、平均因果効果)
グラフ理論

保護中: 統計的因果推論の基礎(2) – 構造的因果モデルとランダム化実験

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための統計的因果推論の基礎としての構造的因果モデルとランダム化実験
推論技術:inference Technology

岩波データサイエンスシリーズvol.3「因果論 実世界のデータから因果を読む」読書メモ

  サマリー 「相関関係」ではない「因果関係」に対して検討する技術が「因果推論」や「因果探索」となる。因果推論と因果探索は、両方とも因果関係を分析する方法だが、「因果推論」は因果関係を検証するための手法であるのに対して、「因果探...
推論技術:inference Technology

保護中: 統計的因果推論の基礎(1)-反事実モデルによる因果の定義と構造方程式モデル

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクの為の統計的因果推論基礎:反事実モデルでの因果の定義と構造方程式モデル
アルゴリズム:Algorithms

保護中: ネットワークフロー問題のアルゴリズム

Ford-Fulkersonのアルゴリズムによる最大通信量問題の解決と最小カット問題との関係、最大流問題の特殊ケースであるニ部グラフの最大マッチング問題、一般マッチング問題と最小費用流問題について述べる。
タイトルとURLをコピーしました