機械学習:Machine Learning

強化学習

保護中: 関数近似を用いた強化学習(1) – 価値関数の関数近似(バッチ学習の場合)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための強化学習での膨大な状態数に対応するための価値関数のバッチ学習のケースでの関数近似
推論技術:inference Technology

保護中: 時系列・空間データのモデリング(1)(動的線形モデル)

動的線形モデルを中心とした時間・空間モデルのベイズモデル化とMCMCによる評価
IOT技術:IOT Technology

保護中: モデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)
アルゴリズム:Algorithms

機械学習プロフェッショナルシリーズ ベイズ深層学習 読書メモ

機械学習プロフェッショナルシリーズ ベイズ深層学習 読書メモ 機械学習プロフェッショナルシリーズ 「ベイズ深層学習 」より読書メモを記述する 前書き ベイズ深層学習の目指すところ 深層学習の課題 大...
グラフ理論

構造学習

構造学習について データが持つ構造を学習することは、そのデータが何であるかという解釈を行う上で重要なものとなる。構造学習の中で最もシンプルなもは、階層的なクラスタリングであり、決定木による学習の基本的な機械学習アルゴリズム...
微分積分:Calculus

機械学習プロフェッショナルシリーズ「機械学習のための連続最適化」読書メモ

サマリー 機械学習における連続最適化とは、ニューラルネットワークの重みやバイアスの最適化、回帰分析のパラメータ推定、SVMのパラメータ推定等の変数が実数値をとる最適化問題を解く手法となる。連続最適化の代表的な手法には、勾配降...
IOT技術:IOT Technology

保護中: モデルフリー型の強化学習(2)- 方策反復法(Q学習法、SARSA、アクタークリック法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるモデルフリー型強化学習への価値反復法(Q学習法、SARSA法、アクター・クリティック法)
python

機械学習スタートアップシリーズ「Pythonで学ぶ強化学習」

サマリー 強化学習は、機械学習の一分野であり、学習を行う主体であり、環境とやり取りをし、行動を選択するエージェント(Agent)と呼ばれる主体が、未知の環境や複雑な問題を持った環境(Enviroment)という状況の...
オンライン学習

保護中: モデルフリー型の強化学習(1)- 価値反復法(モンテカルロ法、TD法、TD(λ)法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習に活用されるモデルフリー型強化学習への価値反復法(モンテカルロ法、TD法、TD(λ)法)適用
オンライン学習

保護中: 探索と活用のトレードオフ解消-リグレットと確率的最適方策、ヒューリスティクス

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるリグレットと確率的最適方策、ヒューリスティクスを用いた強化学習(探索と活動のトレードオフ解消
タイトルとURLをコピーしました