プログラミング言語:Programming Language

プログラミング言語:Programming Language

プログミングにおけるデータの型と静的型付け言語、動的型付け言語

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用されるプログミングにおけるデータの型と静的型付け言語、動的型付け言語(プリミティブ型、ヒープ、Ruby、Python、C#、C++、Java、クラス、オブジェクト、エイリアス問題、ガーベージコレクション、Rust、ボローチェッカー、スタック、グローバル変数、値型、参照型、複合型、列挙型)
python

保護中: 強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network(Prioritized Replay、Multi-step Learning、Distibutional RL、Noisy Nets、Double DQN、Dueling Network、Rainbow、GPU、Epsilon-Greedy法、optimizer、報酬のClipping、Fixed Target Q-Network、Experience Replay、平均二乗誤差、mean squared error、TD誤差、PyGame Learning Enviroment、PLE、OpenAI Gym、CNN)
Clojure

保護中: Clojureを用いたGraphX Pregelでのネットワーク解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたGraphX Pregelでのネットワーク解析(ラベル伝搬、twitterデータ、コミュニティ分析、グラフ構造分析、コミュニティサイズ、コミュニティ検出、アルゴリズム、最大連結成分、トライアングルカウント、Glittering、Google、ケーニヒスベルクの橋、オイラー路)
Clojure

保護中: Clojureを用いたネットワーク解析(2)Glitteringを使ったグラフ中の三角の計算

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojure/Glitteringを使ったグラフ中の三角の計算を用いたネットワーク解析(GraphX、Pregel API、Twitterデータセット、カスタム三角形カウントアルゴリズム、メッセージ送信関数、メッセージマージ関数、外部結合、RDD、頂点属性、Apache Spark、Sparkling、MLlib、Glittering、三角カウント、edge cut戦略、random-vertex-cut戦略、ソーシャルネットワーク、グラフ並列計算機能、Hadoop、データ並列システム、RDG、Resilient Distributed Graph、Hama、Giraph)
Clojure

保護中: Clojure/Incanterを用いた統計解析と相関評価

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いた統計解析と相関評価(累積確率、信頼区間、標準偏差、母集団、95%信頼区間、両側検定、z変換、フィッシャーz変換、累積分布関数、t分布、片側検定、自由度、サンプリングエラー、帰無仮説、対立仮説、仮説検定、標準スコア、ピアソンの積率相関係数、共分散、ジッタリング、対数正規分布、ベキ乗、ギブラットの法則、ヒストグラム)
Clojure

保護中: Apache SparkとMLlibによる大規模な機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるApache SparkとMLlibによる大規模な機械学習(予測値、RMSE、因子行列、ランク、潜在的特徴、近傍領域、二乗和誤差、Mahout、ALS、Scala、RDD、交互最小二乗法、alternating least squares、確率的勾配降下法、永続化、キャッシュ、Flambo、Clojure、Java)
python

保護中: 強化学習に対するニューラルネットワークの適用(1)概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用の概要(Agent、Epsilon-Greedy法、Trainer、Observer、Logger、確率的勾配降下法、Stochastic Gradient Descent、SGD、Adaptive Moment Estimation、Adam、Optimizer、誤差逆伝搬法、Backpropagation、勾配、活性化関数、バッチ法、価値関数、戦略)
python

保護中: モデルフリー強化学習のpythonによる実装(3)経験を価値評価、戦略どちらの更新に利用するか:ValueベースvsPolicyベース

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルフリー強化学習のpythonによる実装ValueベースとPolicyベース(経験を価値評価、戦略どちらの更新に利用するか、Deep Q-Network、深層強化学習、Off-policy Actor Critic、Q-Learning、SARSA、Actor Critic法、Multi-step Learning、TD法、Monte Carlo法、TD(λ)法、Epsilon-Greedy法)
Clojure

保護中: ClojureとHadoopを用いた確率的勾配降下法の実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureとHadoopを用いた確率的勾配降下法の実装(ミニバッチ、Mapper、Reducer、Parkour、Tesser、バッチ勾配降下、結合ステップ、パーティショニング、uberjar、Java、バッチ型勾配降下法、確率的勾配降下法、Hadoopクラスタ、Hadoop分散ファイルシステム、HDFS)
Clojure

マイクロサービスを含めたシステム運用監視の為のElasticStashの活用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスを含めたシステム運用監視の為のElasticStashの活用(Riemann、ロールアップ、スロットル構造、KafKaプラグイン、UTC、timbre、LogStash、log4j、tools.logging、構造化ロギング、一般的なログフォーマット、可視化機能、ダッシュボード、Kibana、パイプライン、UDP、Collectd、RRD、stdin、stdout、ELK Stack、Elastic Stack、Apache Kafka
タイトルとURLをコピーしました