スパースモデリング

アルゴリズム:Algorithms

保護中: 統計数学理論によるブースティング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるブースティング(一般化線型モデル、修正ニュートン法、対数尤度、重み付き最小2乗法、ブースティング、座標降下法、反復重み付け最小2乗法、iteratively reweighted least square method、IRLS method、重み付き経験判別誤差、パラメータ更新則、へシアン行列、補正ニュートン法、modified Newton method、ニュートン法、Newton method、リンク関数、ロジスティック損失、logistic loss、ブースティング・アルゴリズム、ロジットブースト、指数損失、凸マージン損失、アダブースト、弱仮説、経験マージン損失、非線形最適化)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(2)記憶制限付き準ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての記憶制限付き準ニュートン法(疎クリーク分解、sparse clique factorization、コーダルグラフ、疎性、セカント条件、疎ヘッセ行列、DFP公式、BFGS公式、KLダイバージェンス、準ニュートン法、極大クリーク、正定値行列、正定値行列補完、positive define matrix composition、グラフの三角化、完全部分グラフ、クリーク、ヘッセ行列、3重対角行列、Hestenes-Stiefel法、L-BFGS法)
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略に深層学習を適用する:Advanced Actor Critic(A2C)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略に深層学習を適用するAdvanced Actor Critic(A2C)の実装(Policy Gradient手法、Q-learning、Gumbel Max Trix、A3C(Asynchronous Advantage Actor Critic))
アルゴリズム:Algorithms

保護中: 統計数学理論によるν-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるν-サポートベクトルマシンの概要(カーネル関数、有界性、経験マージン判別誤差、バイアス項なしモデル、再生核ヒルベルト空間、予測判別誤差、一様バウンド、統計的一致性、C-サポートベクトルマシン、対応関係、統計モデルの自由度、双対問題、勾配降下、最小距離問題、判別境界、幾何学的解釈、2値判別、経験マージン判別誤差、経験判別誤差、正則化パラメータ、ミニマックス定理、グラム行列、ラグランジュ関数)
アルゴリズム:Algorithms

保護中: バッチ型確率的最適化の分散処理としての確率的座標降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化の分散処理としての確率的座標降下法(COCOA、収束レート、SDCA、γf-平滑、部分問題の近似解、確率的座標降下法、並列確率的座標降下法、並列計算処理、Communication-Efficient Coordinate Ascent、双対座標降下法)
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient(割引現在価値、戦略更新、tensorflow、Keras、CartPole、ACER、Actor Critoc with Experience Replay、Off-Policy Actor Critic、behaviour policy、Deterministic Policy Gradient、DPG、DDPG、Experience Replay、Bellman Equation、方策勾配法、行動履歴)
アルゴリズム:Algorithms

保護中: Exp3.P方策と敵対的多腕バンディット問題の下界の理論概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるExp3.P方策と敵対的多腕バンディット問題の下界の理論概要(累積報酬、Poly INF方策、アルゴリズム、アーベル・ルフィニの定理、Poly INF方策の擬リグレット上界、閉形式、連続微分可能関数、オーディベール、ブベック、INF方策、疑リグレット下界、乱択アルゴリズム、最適オーダーの方策、高確率リグレット上界)
アルゴリズム:Algorithms

保護中: 統計数学理論によるC-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるサポートベクトルマシン C-サポートベクトルマシン(サポートベクトル比、マルコフの不等式、確率不等式、予測判別誤差、1つ抜き交差確認法、LOOCV、判別器、相補性条件、主問題、双対問題、最適解、1次凸最適化問題、判別境界、判別関数、ラグランジュ関数、極限条件、スレイター制約想定、ミニマックス定理、グラム行列、ヒンジ損失、マージン損失、凸関数、ベイズ誤差、正則化パラメータ)
アルゴリズム:Algorithms

保護中: オンライン型確率的最適化の分散処理

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるオンライン型確率的最適化の分散処理(期待誤差、ステップサイズ、エポック、強凸期待誤差、SGD、リプシッツ連続、γ-平滑、α-強凸、Hogwild!、並列化、ラベル伝搬法、グラフ上での伝搬、スパースな特徴ベクトル、非同期型分散SGD、ミニバッチ法、確率的最適化手法、勾配の分散、不偏推定量、SVRG、勾配法のミニバッチ並列化、ネステロフの加速法、並列化SGD)
アルゴリズム:Algorithms

様々な強化学習技術の理論とアルゴリズムとpythonによる実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される様々な強化学習技術の理論とアルゴリズムとpythonによる実装(強化学習,オンライン学習,オンライン予測,深層学習,python,アルゴリズム,理論,実装)
タイトルとURLをコピーしました