シミュレーション

python

GNNを用いた材料の特性や構造をモデル化し、新しい材料の設計や特性予測を行うサービスの概要

GNNを用いた材料の特性や構造をモデル化し、新しい材料の設計や特性予測を行うサービスの概要 目的: GNN(Graph Neural Networks)を用いた新しい材料の設計や特性予測を行うサービスは、...
python

グラフニューラルネットワークを用いた建築構造設計の概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた建築構造設計の概要 グラフニューラルネットワーク(GNN)を用いた建築構造設計は、建築物の構造を自動的に生成し、評価するための手法となる。以下にその概要について述べる。 ...
python

グラフニューラルネットワークを用いた天気予報の概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた天気予報 グラフニューラルネットワーク(GNN)を用いた天気予報は、気象データの複雑な空間的および時間的関係を捉えるための新しいアプローチとなる。 従来の天気予報手法は...
python

グラフニューラルネットワーク用いた反実仮想学習の概要と関連アルゴリズム及び実装例

グラフニューラルネットワーク用いた反実仮想学習の概要 グラフニューラルネットワーク(GNN)を用いた反実仮想学習(counterfactual learning)は、グラフ構造を持つデータに対して「もし〜だった...
python

物理シミュレーションに用いられるInteraction Networksの概要と関連アルゴリズム及び実装例

物理シミュレーションに用いられるInteraction Networksの概要 Interaction Networks(INs)は、物理シミュレーションや他の科学的応用に使用される、グラフ構造を持つデータ間の...
python

Graph Network-based Simulatorsの概要とアルゴリズム及び実装例

Graph Network-based Simulatorsの概要 Graph Network-based Simulators(GNS)は、グラフネットワークを用いて物理システムの動的挙動を予測する物理シミュ...
python

物理シミュレーションに用いられるGraphNetworksの概要とアルゴリズム及び実装例

物理シミュレーションに用いられるGraphNetworksの概要 物理シミュレーションにおけるGraph Networksの応用は、複雑な物理システムを効率的かつ高精度にモデル化するための強力な手法となる。以下...
python

物理インフォームドニューラルネットワーク(PINNs)の概要とアルゴリズム及び実装例

物理インフォームドニューラルネットワーク(PINNs)の概要 物理インフォームドニューラルネットワーク(PINNs)は、データ駆動型の機械学習アプローチと物理モデリングを組み合わせた手法であり、ニューラルネッ...
python

有限体積法の概要と関連アルゴリズム及び実装例

有限体積法の概要 有限体積法(Finite Volume Method、FVM)は、偏微分方程式を解くための数値解法の一つであり、物理的な領域を有限個のセルに分割し、各セル内で方程式を平均化して離散化すること...
python

MeshGraphNetsの概要とアルゴリズム及び実装例

MeshGraphNetsの概要 MeshGraphNetsは、物理シミュレーションに特化したグラフニューラルネットワーク(GNN)の一種で、特にメッシュベースの表現を用いたシミュレーションに優れてたもので、M...
タイトルとURLをコピーしました