スモールデータ

python

Noise Contrastive Estimation (NCE)の概要とアルゴリズム及び実装例

Noise Contrastive Estimation (NCE)の概要 Noise Contrastive Estimation (NCE) は、確率モデルのパラメータを推定するための手法であり、特に大...
python

Contrastive Divergence (CD)の概要とアルゴリズム及び実装例

Contrastive Divergence (CD)の概要 Contrastive Divergence (CD)は、主に制限付きボルツマンマシン(RBM)のトレーニングに使用される学習アルゴリズムで、デ...
python

Negative Log-Likelihoodの概要とアルゴリズム及び実装例

Negative Log-Likelihoodの概要 Negative Log-Likelihood (NLL)は、統計学や機械学習においてモデルのパラメータを最適化するための損失関数の一つで、特に、確率分...
python

ネガティブサンプリングの概要とアルゴリズム及び実装例

ネガティブサンプリングの概要 ネガティブサンプリングは、自然言語処理や機械学習における学習アルゴリズムの一つで、特に"Word2Vec"でも述べているWord2Vecなどの単語埋め込みモデルで使われ、大規模...
アルゴリズム:Algorithms

説明できる機械学習の様々な手法と実装例について

Explainable Machine Learning 説明可能な機械学習(Explainable Machine Learning)は、機械学習モデルの予測や意思決定の結果を理解可能な形で説明する手法やアプローチ...
スモールデータ

スモールデータでの機械学習のアプローチと各種実装例

スモールデータでの機械学習 "リスクタスク対応の為の再現率100%の実現の課題と実装"や"教師データが不正確な機械学習への対処方法"で述べているように、学習するデータの量が少ない(スモールデータ)という...
アルゴリズム:Algorithms

保護中: アトミックノルムによるスパース機械学習の定義と具体例

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアトミックノルムによるスパース機械学習での定義と具体例(テンソルの核型ノルム、nuclear norm、高階テンソル、トレースノルム、K階テンソル、アトム集合、汚いモデル、dirty model、マルチタスク学習、制約なし最適化問題、ロバスト主成分分析、L1ノルム、グループL1ノルム、L1誤差項、ロバスト統計、フロベニウスノルム、外れ値推定、重複のあるグループ正則化、アトム集合の和集合、ベクトルの要素単位のスパース性、グループ単位のスパース性、行列の低ランク性)
Symbolic Logic

スモールデータ学習、論理と機械学習との融合、局所/集団学習

スモールデータ学習、論理と機械学習との融合、局所/集団学習 スモールデータとは、サンプル数が限られたデータセットのことを指す。スモールデータは、大量のデータを持つ場合と比較して、モデルをトレーニングするために使...
タイトルとURLをコピーしました