数学:Mathematics

アルゴリズム:Algorithms

粒子群最適化の概要と実装について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される粒子群最適化の概要と実装について(Clojure、CAPSOS、R language、pso、pyhton、pyswarm、ニューラルネットワークのトレーニング、パラメータの最適化、組合せ最適化、ロボット制御、パターン認織)
Clojure

一般化線形モデルの概要と各種言語による実装

一般化線形モデルの概要 一般化線形モデル(Generalized Linear Model, GLM)は、統計モデリングや機械学習の手法の一つであり、応答変数(目的変数)と説明変数(特徴量)の間の関係を確率的に...
python

マルチタスク学習の概要と適用事例と実装例

マルチタスク学習の概要 マルチタスク学習(Multi-Task Learning)は、複数の関連するタスクを同時に学習する機械学習の手法となる。通常、個々のタスクは異なるデータセットや目的関数を持っているが...
python

バンディット問題の概要と適用事例及び実装例

  概要 バンディット問題(Bandit problem)は、強化学習の一種であり、意思決定を行うエージェントが未知の環境において、どの行動を選択するかを学習する問題となる。この問題は、複数の行動の中から最適な行動を選...
python

深層学習におけるattentionについて

「Attention Is All You Need」について "Attention Is All You Need"という論文は、2017年にGoogleの研究者によって発表された”Transformerモデルの概...
アルゴリズム:Algorithms

グラフニューラルネットワークの概要と適用事例およびpythonによる実装例について

グラフニューラルネットワークについて グラフニューラルネットワーク(Graph Neural Network, GNN)は、グラフ構造を持つデータに対するニューラルネットワークの一種であり、グラフ構造を持つデータ...
アルゴリズム:Algorithms

Causal Forestの概要と適用事例とRとPythonによる実装例について

  Causal Forestについて Causal Forestは、観測されたデータから因果効果を推定するための機械学習モデルであり、ランダムフォレストをベースにしており、因果推論に必要な条件に基づいて拡...
数学:Mathematics

SF小説「三体」と三体問題、機械学習技術

イントロダクション 「三体」(さんたい)第一巻、第二巻上、第二巻下、第三巻上、第三巻下を読んでいる。 三体は、中国のSF作家劉慈欣による長編SF小説であり、2006年5月から12月まで、中国のSF雑誌『科幻世...
アルゴリズム:Algorithms

混合整数最適化の概要とアルゴリズム及びpythonによる実装

  混合整数最適化(Mixed-Integer Optimization)について 混合整数最適化は、数理最適化の一種であり、連続変数と整数変数を同時に扱う問題のことを指す。この分野は、さまざまな産業やビジネス領域で現...
数学:Mathematics

不確実性と機械学習技術

不確実性とは 不確実性(Uncertainty)とは、将来の出来事や結果が予測しにくい、不明確な状態や情報のことを指し、我々が持つ知識や情報の限界によって引き起こされるものであり、完全な情報や確信を持つことが難し...
タイトルとURLをコピーしました