数学:Mathematics

アルゴリズム:Algorithms

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(2)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(数値解析例、ヒートマップ、人工データ、制限強凸性、制限等長性、kスパースベクトル、ノルムの独立性、劣微分、凸関数、回帰係数ベクトル、直交補空間)
アルゴリズム:Algorithms

様々な強化学習技術の理論とアルゴリズムとpythonによる実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される様々な強化学習技術の理論とアルゴリズムとpythonによる実装(強化学習,オンライン学習,オンライン予測,深層学習,python,アルゴリズム,理論,実装)
ICT技術:ICT Technology

機械学習技術について

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに活用される機械学習技術について
python

保護中: 強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network(Prioritized Replay、Multi-step Learning、Distibutional RL、Noisy Nets、Double DQN、Dueling Network、Rainbow、GPU、Epsilon-Greedy法、optimizer、報酬のClipping、Fixed Target Q-Network、Experience Replay、平均二乗誤差、mean squared error、TD誤差、PyGame Learning Enviroment、PLE、OpenAI Gym、CNN)
Clojure

保護中: Clojureを用いたGraphX Pregelでのネットワーク解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたGraphX Pregelでのネットワーク解析(ラベル伝搬、twitterデータ、コミュニティ分析、グラフ構造分析、コミュニティサイズ、コミュニティ検出、アルゴリズム、最大連結成分、トライアングルカウント、Glittering、Google、ケーニヒスベルクの橋、オイラー路)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論(アルゴリズム、未観測変数のサンプリング、ディリクレ分布、ガンマ分布、条件付き分布、カテゴリ分布、事後分布、同時分布、超パラメータ、知識モデル、データ発生過程、潜在変数)
アルゴリズム:Algorithms

保護中: 敵対的バンディッド問題でのHedgeアルゴリズムとExp3方策

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される敵対的バンディッド問題でのHedgeアルゴリズムとExp3方策(擬リグレット上界、期待累積報酬、最適パラメータ、期待リグレット、多腕バンディット問題、Hedgeアルゴリズム、エキスパート、報酬版Hedgeアルゴリズム、ブースティング、フロイント、シャビレ、疑似コード、オンライン学習、PAC学習、質問学習)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度(グラム行列、仮説集合、判別境界、過剰適合、マージン損失、判別関数、予測半正定値、普遍カーネル、再生核ヒルベルト空間、予測判別誤差、L1ノルム、ガウスカーネル、指数カーネル、2項カーネル、コンパクト集合、経験ラデマッハ複雑度、ラデマッハ複雑度、表現定理)
アルゴリズム:Algorithms

保護中: バッチ型確率的最適化 – 確率的分散縮小勾配降下法と確率的平均勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化 - 確率的分散縮小勾配降下法と確率的平均勾配法(SAGA、SAG、収束レート、正則化項、強凸条件、改良型確率的平均勾配法、不偏推定量、SVRG、アルゴリズム、正則化、ステップサイズ、メモリ効率、ネカテロフの加速法、ミニバッチ法、SDCA)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法(シャーマン・モリソンの公式、1ランク更新、フィッシャー情報行列、正則条件、推定誤差、オンライン学習、自然勾配法、ニュートン法、探索方向、最急降下法、統計的漸近理論、パラメータ空間、幾何構造、ヘッセ行列、正定値性、ヘリンジャー距離、シュワルツの不等式、ユークリッド距離、統計学、レーベンバーグ・マーカート法、ガウス・ニュートン法、ウルフ条件)
タイトルとURLをコピーしました