数学:Mathematics

強化学習

保護中: 関数近似を用いた強化学習(1) – 価値関数の関数近似(バッチ学習の場合)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための強化学習での膨大な状態数に対応するための価値関数のバッチ学習のケースでの関数近似
推論技術:inference Technology

保護中: 時系列・空間データのモデリング(1)(動的線形モデル)

動的線形モデルを中心とした時間・空間モデルのベイズモデル化とMCMCによる評価
IOT技術:IOT Technology

保護中: モデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)
グラフ理論

構造学習

構造学習について データが持つ構造を学習することは、そのデータが何であるかという解釈を行う上で重要なものとなる。構造学習の中で最もシンプルなもは、階層的なクラスタリングであり、決定木による学習の基本的な機械学習アルゴリズム...
微分積分:Calculus

機械学習プロフェッショナルシリーズ「機械学習のための連続最適化」読書メモ

サマリー 機械学習における連続最適化とは、ニューラルネットワークの重みやバイアスの最適化、回帰分析のパラメータ推定、SVMのパラメータ推定等の変数が実数値をとる最適化問題を解く手法となる。連続最適化の代表的な手法には、勾配降...
IOT技術:IOT Technology

保護中: モデルフリー型の強化学習(2)- 方策反復法(Q学習法、SARSA、アクタークリック法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるモデルフリー型強化学習への価値反復法(Q学習法、SARSA法、アクター・クリティック法)
オンライン学習

保護中: 探索と活用のトレードオフ解消-リグレットと確率的最適方策、ヒューリスティクス

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるリグレットと確率的最適方策、ヒューリスティクスを用いた強化学習(探索と活動のトレードオフ解消
IOT技術:IOT Technology

時系列データ解析

時系列データの学習の概要 時系列データとは、株価や気温、トラフィック量などの時間の経過に応じて値が変化するデータのことを呼ぶ。この時系列データに対して機械学習を適用することで、大量のデータを学習し、未知のデ...
オンライン学習

保護中: プランニング問題(2)動的計画法の実装(価値反復法と方策反復法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習としてのプランニング問題への動的計画法の実装(価値反復法と方策反復法)
推論技術:inference Technology

統計的因果推論と因果探索

統計的因果推論と因果探索について 機械学習を活用する際に「因果関係」と「相関関係」の違いを考える事は重要になる。 例えば、以下のようなチョコレートの消費量とノーベル賞の受賞者数のデータがある。 ...
タイトルとURLをコピーしました