数学:Mathematics

python

ホップクロフト・カープ法 (Hopcroft–Karp Algorithm)の概要とアルゴリズム及び実装例

ホップクロフト・カープ法 (Hopcroft–Karp Algorithm)の概要 ホップクロフト・カープ法(Hopcroft–Karp Algorithm)は、二部グラフにおける最大マッチング(Maximum...
アルゴリズム:Algorithms

機械学習技術でのターゲットドメインに特化したファインチューニングについて

機械学習技術でのターゲットドメインに特化したファインチューニングについて ターゲットドメインに特化したファインチューニングは、機械学習技術において、あるモデルを事前に訓練された一般的なモデルから、特定のタスクやド...
python

疎密の非対称性に特化したネットワーク設計とGNN

疎密の非対称性に特化したネットワーク設計 「疎密の非対称性に特化したネットワーク設計」は、以下のような状況に非常に重要なアプローチとなる。 データの一部に豊富な事例(密な領域)があり、他の部分...
python

反復最適化アルゴリズムの概要と実装例について

反復最適化アルゴリズムの概要 反復最適化アルゴリズムは、与えられた問題の最適解を見つけるために反復的に近似解を改良していくアプローチとなる。これらのアルゴリズムは、最適化問題において特に有用であり、さまざまな分野で利用され...
アルゴリズム:Algorithms

アンサンブル学習とマルチエージェントシステム

アンサンブル学習について アンサンブル学習は、機械学習の分野で広く使用されている強力な技術の一つであり、アンサンブル学習は、複数の機械学習モデルを組み合わせて、個々のモデルよりも優れた予測性能を達成しようとするア...
アルゴリズム:Algorithms

量子もつれと共分散

  量子もつれ 量子もつれは、2つ以上の粒子が非常に強く結びついた状態であり、空間的にどれだけ離れていても、互いの状態が瞬時に相関する現象となる。 より直感的に考えるために、2つの量子コイン(AとB)がもつれ...
Symbolic Logic

エージェントに知的な振る舞いをさせるための考察

エージェントに知的な振る舞いをさせる方法について 今回は、"人工生命とエージェント技術"で述べているエージェントに知的な振る舞いをさせる方法について考察する。 1. 知的な振る舞いの設計: 知的な振る舞いを...
python

FitNetによるモデルの蒸留の概要とアルゴリズム及び実装例について

FitNetによるモデルの蒸留の概要 FitNetは、モデルの蒸留(Distillation)手法の一つで、小規模な生徒モデルが大規模な教師モデルから知識を学習するための手法となる。FitNetは特に、異なるアーキテクチ...
python

疎密なデータでの機械学習とMoE(Mixture of Experts)

疎密なデータでの機械学習 疎な領域(データが少ない)と密な領域(データが多い)が混在するデータ集合に対して深層学習を行うと、以下のような現象や問題が起こりやすくなる。 1. バイアスが生じる(学習...
python

残差結合について

残差結合について 残差結合(Residual Connection)は、深層学習ネットワークにおいて層を跨いで情報を直接伝達する手法の一つであり、この手法は、特に深いネットワークを訓練する際に発生する勾配消失や勾配爆発の...
タイトルとURLをコピーしました