数学:Mathematics

python

グラフニューラルネットワークを用いた分子シミュレーションの概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた分子シミュレーションの概要 グラフニューラルネットワークを用いた分子シミュレーションは、従来の手法に比べて高い精度や効率性を示すことが期待されたアプローチであり、特に、分子の...
python

グラフニューラルネットワークを用いた天気予報の概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた天気予報 グラフニューラルネットワーク(GNN)を用いた天気予報は、気象データの複雑な空間的および時間的関係を捉えるための新しいアプローチとなる。 従来の天気予報手法は...
python

グラフニューラルネットワークを用いたマルチエージェントシステムの概要と実装例

グラフニューラルネットワークを用いたマルチエージェントシステムの概要 グラフニューラルネットワーク(GNN)を使用したマルチエージェントシステムは、複数のエージェントがグラフ構造で相互作用し、エージェント間の関係...
アルゴリズム:Algorithms

Temporal Fusion Transformerの概要とアルゴリズム及び実装例

Temporal Fusion Transformerの概要 Temporal Fusion Transformer (TFT) は、複雑な時系列データを扱うために開発されたディープラーニングモデルで、リッチ...
python

R-GCNの概要とアルゴリズム及び実装例

R-GCNの概要 R-GCN(Relational Graph Convolutional Network)は、グラフデータ上で畳み込み演算を行うニューラルネットワークの一種となる。通常のグラフ畳み込み演算では...
python

統計物理学と人工知能技術への応用

統計物理学の概要 統計物理学は、物理学の一分野であり、統計力学の原理を用いて物理系の集団的な振る舞いを研究する学問で、物質のマクロな性質や現象を、微視的な粒子(分子や原子)の運動や相互作用から統計的に理解しようとするアプロ...
python

HIN2Vec-PCAの概要とアルゴリズム及び実装例

HIN2Vec-PCAの概要 HIN2Vec-PCAは、異種情報ネットワーク(HIN)から特徴を抽出するために、HIN2Vecと主成分分析(PCA)を組み合わせた手法となる。この方法の概要は、以下のように整理で...
python

HIN2Vec-GANの概要とアルゴリズム及び実装例

HIN2Vec-GANの概要 HIN2Vec-GANは、グラフ上の関係を学習するために使われる技術の一つで、具体的には、異種情報ネットワーク(Heterogeneous Information Network,...
python

予測制約法(Predictive Control with Constraints)の概要とアルゴリズム及び実装例

予測制約法(Predictive Control with Constraints)の概要 予測制約法(Predictive Control with Constraints)は、制約条件を満たしながらシステムの将来の挙動...
数学:Mathematics

確率と不確実性とランダム性の関係

確率について 確率とは、ある事象が起こる可能性の程度を数値化したものであり、具体的には、ある事象が発生する確率は、その事象が起こる場合の数(好ましい結果)を、全体の場合の数(可能な全ての結果)で割ることによって計...
タイトルとURLをコピーしました