アルゴリズム:Algorithms 保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(2) デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(数値解析例、ヒートマップ、人工データ、制限強凸性、制限等長性、kスパースベクトル、ノルムの独立性、劣微分、凸関数、回帰係数ベクトル、直交補空間) 2023.02.06 アルゴリズム:Algorithmsスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 様々な強化学習技術の理論とアルゴリズムとpythonによる実装 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される様々な強化学習技術の理論とアルゴリズムとpythonによる実装(強化学習,オンライン学習,オンライン予測,深層学習,python,アルゴリズム,理論,実装) 2023.02.05 アルゴリズム:Algorithmsオンライン学習グラフ理論スパースモデリング幾何学:Geometry強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python 保護中: 強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network(Prioritized Replay、Multi-step Learning、Distibutional RL、Noisy Nets、Double DQN、Dueling Network、Rainbow、GPU、Epsilon-Greedy法、optimizer、報酬のClipping、Fixed Target Q-Network、Experience Replay、平均二乗誤差、mean squared error、TD誤差、PyGame Learning Enviroment、PLE、OpenAI Gym、CNN) 2023.02.02 pythonアルゴリズム:Algorithmsグラフ理論スパースモデリング幾何学:Geometry強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory
Clojure 保護中: Clojureを用いたGraphX Pregelでのネットワーク解析 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたGraphX Pregelでのネットワーク解析(ラベル伝搬、twitterデータ、コミュニティ分析、グラフ構造分析、コミュニティサイズ、コミュニティ検出、アルゴリズム、最大連結成分、トライアングルカウント、Glittering、Google、ケーニヒスベルクの橋、オイラー路) 2023.02.01 Clojureグラフ理論微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: ベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論(アルゴリズム、未観測変数のサンプリング、ディリクレ分布、ガンマ分布、条件付き分布、カテゴリ分布、事後分布、同時分布、超パラメータ、知識モデル、データ発生過程、潜在変数) 2023.01.30 アルゴリズム:Algorithmsグラフ理論ベイズ推定幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: 敵対的バンディッド問題でのHedgeアルゴリズムとExp3方策 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される敵対的バンディッド問題でのHedgeアルゴリズムとExp3方策(擬リグレット上界、期待累積報酬、最適パラメータ、期待リグレット、多腕バンディット問題、Hedgeアルゴリズム、エキスパート、報酬版Hedgeアルゴリズム、ブースティング、フロイント、シャビレ、疑似コード、オンライン学習、PAC学習、質問学習) 2023.01.27 アルゴリズム:Algorithmsバンディッド問題強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: 統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度(グラム行列、仮説集合、判別境界、過剰適合、マージン損失、判別関数、予測半正定値、普遍カーネル、再生核ヒルベルト空間、予測判別誤差、L1ノルム、ガウスカーネル、指数カーネル、2項カーネル、コンパクト集合、経験ラデマッハ複雑度、ラデマッハ複雑度、表現定理) 2023.01.26 アルゴリズム:Algorithmsグラフ理論幾何学:Geometry微分積分:Calculus数理論理学:Mathematical logic最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: バッチ型確率的最適化 – 確率的分散縮小勾配降下法と確率的平均勾配法 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化 - 確率的分散縮小勾配降下法と確率的平均勾配法(SAGA、SAG、収束レート、正則化項、強凸条件、改良型確率的平均勾配法、不偏推定量、SVRG、アルゴリズム、正則化、ステップサイズ、メモリ効率、ネカテロフの加速法、ミニバッチ法、SDCA) 2023.01.25 アルゴリズム:Algorithms幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory
アルゴリズム:Algorithms 保護中: 機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法(シャーマン・モリソンの公式、1ランク更新、フィッシャー情報行列、正則条件、推定誤差、オンライン学習、自然勾配法、ニュートン法、探索方向、最急降下法、統計的漸近理論、パラメータ空間、幾何構造、ヘッセ行列、正定値性、ヘリンジャー距離、シュワルツの不等式、ユークリッド距離、統計学、レーベンバーグ・マーカート法、ガウス・ニュートン法、ウルフ条件) 2023.01.24 アルゴリズム:Algorithms幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: ベイズ推論による機械学習における各種モデルの近似計算 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習における各種モデルの近似計算(構造化変分推論、変分推論アルゴリズム、混合モデル、共役事前分布、KLダイバージェンス、ELBO、evidence lower bound、崩壊型ギブスサンプリング、ブロッキングギブスサンプリング、近似推論) 2023.01.23 アルゴリズム:Algorithmsグラフ理論ベイズ推定微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory