確率・統計:Probability and Statistics

グラフ理論

はじめての最適化 読書メモ

はじめての最適化 読書メモ はじめての最適化より 「本書は具体的に理解できるよう、図形的説明を多用しながら分かりやすく詳説する。問題と解法の直感的理解を促し、具体的な問題を解けるようになることを目標とする。本文を...
アルゴリズム:Algorithms

保護中: ベイズ統計と機械学習について

機械学習がもたらす科学的方法論及びエンジニアリングへのインパクトと機械学習の設計において確率統計的接近法とりわけベイズモデルが適しているところについて
アルゴリズム:Algorithms

保護中: サポートベクトルマシンのソフトウェアと実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに用いられるサポートベクトルマシンでのR(kernlab)を使ったSVMによる分類と回帰とLIBSVMのアルゴリズム(SMOアルゴリズム、シュリンキング)
アルゴリズム:Algorithms

保護中: 周辺確率分布の計算 – 平均場近似

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルへのグラフィカルモデルの適用、平均場近似による変分問題からの周辺確率分布の近似計算とアルゴリズム
アルゴリズム:Algorithms

保護中: 変分ベイズ学習の枠組みとアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルでの複雑なモデルを近似計算するための変分ベイズ学習の概要とアルゴリズム(変分ベイズ学習、経験変分ベイズ学習)
アルゴリズム:Algorithms

保護中: k-平均法とベイズ推定法(混合ガウスモデル)を用いたクラスタリングの比較

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルとしてのk-平均法とベイズ推定法(混合ガウスモデル)のクラスタリング比較
アルゴリズム:Algorithms

保護中: ガウス過程の概要(5)ガウス過程回帰の一般化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの拡張としのガウス過程のコーシー分布をロバスト性担保、ガウス過程識別モデル、ポアソン分布を用いた機械の故障や素粒子の崩壊等の一般化について
Stream Data Processing

保護中: SVMを用いた逐次学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるサポートベクトルマシンでの、SVMを利用して訓練事例を追加/削除することで逐次学習を実現するアルゴリズムの概要
アルゴリズム:Algorithms

保護中: 周辺確率分布の計算 – 菊池近似

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクの為の確率的生成モデルへのグラフィカルモデルの適用、菊池自由エネルギー関数による一般化確率伝搬法での周辺確率分布計算とベーテ自由エネルギー関数との比較とHasse図
アルゴリズム:Algorithms

保護中: 具体例を用いたベイズ推定の概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルで利用するベイズ推定の基礎(交換可能性、デ・フィネッティの定理、共役事前分布、事後分布、周辺尤度等)を具体的な事例(ディリクレ-多項分布モデル、ガンマ-ガウス分布モデル)を元に計算する
タイトルとURLをコピーしました