確率・統計:Probability and Statistics

Symbolic Logic

保護中: 最大流とグラフカット(3) マルコフ確率場における推論とグラフカット

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報最適化手法である劣モジュラ最適化によるグラフ最大流抽出のためのマルコフ確率場における推論とグラフカット
Symbolic Logic

Inductive logic programming 2020-2021論文集より

前回はILP2019について述べた。今回はコロナパンデミックの影響で一年スキップされたILP2021について述べる。 帰納論理プログラミング(ILP)は、機械学習の一分野であり、関係データから論理表現...
Symbolic Logic

保護中: 最大流とグラフカット(1) 最大量と最小s-tカット

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法である劣モジュラ最適化の有向グラフの最小カット、最大流量問題への適用
Symbolic Logic

保護中: 劣モジュラ関数の最大化と貪欲法の適用(2)センサ配置問題と能動学習問題

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される離散情報の最適化の手法である劣モジュラ最適化でのセンサ配置と能動学習問題への劣モジュラ関数最大化と貪欲法の適用
Symbolic Logic

Inductive logic Programming 2019論文集より

機械学習技術 人工知能技術 自然言語処理技術 セマンティックウェブ技術 オントロジー技術 デジタルトランスフォーメーション技術  知識情報処理技術  AI学会論文を集めて   推論技術 前回はILP2018について述べた。今回は2019年...
IOT技術:IOT Technology

保護中: 劣モジュラ関数の最大化と貪欲法の適用(1) 貪欲法の概要と文書要約タスクへの適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法:劣モジュラ関数最大化への貪欲法の適用と文書要約タスクへの活用
Symbolic Logic

Inductive logic Programming 2018論文集より

前回はILP2017について述べた。今回はイタリア/フェラーラで開催されたILP2018について述べる。 帰納論理プログラミング(ILP)は機械学習のサブフィールドであり、例、背景知識、仮説を表現する...
Symbolic Logic

保護中: 劣モジュラ最適化の基礎(3)基多面体の最小ノルム点を利用した劣モジュラ関数最小化問題アルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される離散情報の最適化手法(劣モジュラ最適化)の手法の一つである基多面体最小ノルム点を使った劣モジュラ関数最小化問題アルゴリズム
Symbolic Logic

保護中: 劣モジュラ最適化の基礎(2)劣モジュラ関数の基本性質

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報の最適化アルゴリズム(劣モジュラー最適化)の基礎としての劣モジュラ関数の3つの基本性質(正規化、非負、対称)とグラフカット最大・最小化問題への適用
Symbolic Logic

保護中: 劣モジュラ最適化の基礎(1)劣モジュラ関数の定義と具体例

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報最適化アルゴリズムのベースとなる劣モジュラ関数(カバー関数、グラフカット関数、凹関数) と最適化
タイトルとURLをコピーしました