説明できる機械学習

アルゴリズム:Algorithms

“Graph Neural Networks: Foundations, Frontiers, and Applications”の概要

Introduction Springerから2022年に出版された"Graph Neural Networks: Foundations, Frontiers, and Applications"の概要について...
python

GNNにおける説明可能性の概要とアルゴリズム及び実装例

GNNにおける説明可能性の概要 GNN(Graph Neural Networks)は、グラフ構造データを扱うためのニューラルネットワークであり、ノードとエッジ(頂点と辺)の情報を利用して、グラフデータ内のパタ...
python

機械学習におけるメッセージパッシングの概要とアルゴリズム及び実装例

機械学習におけるメッセージパッシング 機械学習におけるメッセージパッシングは、グラフ構造を持つデータや問題に対する効果的なアプローチで、特に、グラフニューラルネットワーク(Graph Neural Network...
アルゴリズム:Algorithms

説明できる機械学習の様々な手法と実装例について

Explainable Machine Learning 説明可能な機械学習(Explainable Machine Learning)は、機械学習モデルの予測や意思決定の結果を理解可能な形で説明する手法やアプローチ...
アルゴリズム:Algorithms

保護中: 説明できる機械学習(19)prototypeとcriticism

このコンテンツはパスワードで保護されています。閲覧するには以下にパスワードを入力してください。 パスワード:
アルゴリズム:Algorithms

保護中: 説明できる機械学習(17)反事実的説明 (Counterfactual Explanations)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される反事実的説明による機械学習結果の説明(Anchor、Growing Spheresアルゴリズム、Python、Alibi、カテゴリカル特徴量、羅生門効果、LIME、全結合型ニューラルネット、反事実生成アルゴリズム、ユークリッド距離、中央絶対偏差、Nelder-Mead法、因果意味論、原因)
アルゴリズム:Algorithms

保護中: 説明できる人工知能(16)モデル非依存の解釈(SHAP (SHapley Additive exPlanations))

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される説明できる人工知能としてのSHAPを用いたモデル非依存解釈(scikit-learn、xgboost、LightGBM、tree boosting、R、shapper、 fastshap、TreeSHAP、KernelSHAP、partial dependence plot、permutation feature importance、feature importance、feature dependence、interactions, clustering、summary plots、atomic unit、LIME、決定木、ゲーム理論、クラスタリング、SHAP相互作用値、ALE plot、画像マッピング、一貫性、欠損、局所正確性、効率性 、対称性 、ダミー性、加法性、SHapley Additive exPlanations、ローカルサロゲートモデル)
アルゴリズム:Algorithms

保護中: 説明できる人工知能(14)モデル非依存の解釈(Scoped Rules (Anchors))

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される説明できる機械学習としてのAnchorによるモデル非依存の解釈(Python、anchor、Alibi、Java、Anchors、BatchSAR、表形式データ、Multi-Armed Bandit、KL-LUCB、強化学習、グラフ探索アルゴリズム、LIME)
タイトルとURLをコピーしました