戦略

アルゴリズム:Algorithms

保護中: 深層強化学習における価値評価と戦略と弱点

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される深層強化学習における価値評価と戦略と弱点(サンプル効率の悪さ、手法の検証も難しさ、実装の仕方による性能への影響、ライブラリの初期値、再現性の低さ、過学習、局所最適、器用貧乏、TRPO、PPO、連続値コントロール、画像コントロール、Policyベース、Valueベース)
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略に深層学習を適用する:Advanced Actor Critic(A2C)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略に深層学習を適用するAdvanced Actor Critic(A2C)の実装(Policy Gradient手法、Q-learning、Gumbel Max Trix、A3C(Asynchronous Advantage Actor Critic))
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient(割引現在価値、戦略更新、tensorflow、Keras、CartPole、ACER、Actor Critoc with Experience Replay、Off-Policy Actor Critic、behaviour policy、Deterministic Policy Gradient、DPG、DDPG、Experience Replay、Bellman Equation、方策勾配法、行動履歴)
python

保護中: 強化学習に対するニューラルネットワークの適用(1)概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用の概要(Agent、Epsilon-Greedy法、Trainer、Observer、Logger、確率的勾配降下法、Stochastic Gradient Descent、SGD、Adaptive Moment Estimation、Adam、Optimizer、誤差逆伝搬法、Backpropagation、勾配、活性化関数、バッチ法、価値関数、戦略)
python

保護中: モデルフリー強化学習のpythonによる実装(3)経験を価値評価、戦略どちらの更新に利用するか:ValueベースvsPolicyベース

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルフリー強化学習のpythonによる実装ValueベースとPolicyベース(経験を価値評価、戦略どちらの更新に利用するか、Deep Q-Network、深層強化学習、Off-policy Actor Critic、Q-Learning、SARSA、Actor Critic法、Multi-step Learning、TD法、Monte Carlo法、TD(λ)法、Epsilon-Greedy法)
バンディッド問題

バンディット問題の理論とアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される最適な戦略を選ぶためのバンディット問題の理論とアルゴリズムについて
タイトルとURLをコピーしました