拡張ラグランジュ法

アルゴリズム:Algorithms

保護中: 重複型スパース正則化によるスパース機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される重複型スパース正則化によるスパース機械学習(主問題、双対問題、相対双対ギャップ、双対ノルム、モーローの定理、拡張ラグランジュ法、交互乗数法、停止条件、重複ありグループL1ノルム、拡張ラグランジュ関数、prox作用素、ラグランジュ乗数ベクトル、線形制約、交互方向乗数法、制約付き最小化問題、テンソルの多重線形ランク、凸緩和、重複型トレースノルム、置換行列、正則化法、補助変数、エラスティックネット正則化、罰則項、タッカー分解、高階特異値分解、因子行列分解、特異値分解、ウェーブレット変換、全変動、雑音除、圧縮センシング、異方的全変動、テンソル分解、エラスティックネット)
アルゴリズム:Algorithms

保護中: L1ノルム正則化のための最適化手法としての双対拡張ラグランジュ法・双対交互方向乗数法

デジタルトランスフォーメーショ(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース学習でのL1ノルム正則化のための最適化手法(FISTA、SpaRSA、OWLQN、DL法、L1ノルム、チューニング、アルゴリズム、DADMM、IRS、ラグランジュ乗数、近接点法、交互方向乗数法、勾配上昇法、拡張ラグランジュ法、ガウス・サイデル法、連立一次方程式、制約付きノルム最小化問題、コレスキー分解、交互方向乗数法、双対拡張ラグランジュ法、相対双対ギャップ、ソフト閾値関数、へシアン行列)
タイトルとURLをコピーしました