最適性条件

アルゴリズム:Algorithms

保護中: 機械学習における主問題に対する最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される機械学習における主問題に対する最適化(バリア関数法、ペナルティ関数法、大域的最適解、ヘッセ行列の固有値、実行可能領域、制約なし最適化問題、直線探索、最適性条件のラグランジュ乗数、集積点、有効制約法)
アルゴリズム:Algorithms

保護中: 機械学習における制約付き不等式最適化問題の最適性条件

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における制約付き不等式最適化問題の最適性条件(双対問題、強双対性、ラグランジュ関数、線形計画問題、スレイター条件、主双対内点法、弱双対性、凸最適化の1次の十分条件、2次の十分条件、KKT条件、停留条件、1次の最適性条件、有効制約式、Karush-Kuhn-Tucker、局所最適解)
アルゴリズム:Algorithms

保護中: 機械学習における等式制約付き最適化問題の最適性条件

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される制約付き機械学習における等式制約付き最適化問題の最適性条件(不等式制約付き最適化問題、有効制約法、ラグランジュ乗数、1次独立、局所最適解、真凸関数、強双対性定理、ミニマックス定理、強双対性、大域的最適解、2次の最適性条件、ラグランジュ未定乗数法、勾配ベクトル、1次の最適性問題)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(1) アルゴリズムの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての準ニュートン法(BFGS公式、ラグランジュ乗数、最適性条件、凸最適化問題、KLダイバージェンス最小化、等式制約付き最適化問題、DFG公式、正定値行列、幾何構造、セカント条件、準ニュートン法の更新則、ヘッセ行列、最適化アルゴリズム、探索方向、ニュートン法)
アルゴリズム:Algorithms

保護中: 機械学習における最適性条件とアルゴリズムの停止条件

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用される機械学習における最適性条件とアルゴリズムの停止条件(スケーリング、影響、機械イプシロン、アルゴリズム停止条件、反復法、凸最適解、制約付き最適化問題、大域最適解、局所最適解、凸関数、2次の十分条件、2次の必要条件、1次の必要条件)
Symbolic Logic

保護中: サポートベクトルマシンでの最適化概論:最適性条件と汎用的解法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるサポートベクトルマシンでの最適性条件(強双対とKKT)と汎用的解法(アクティブセットと内点法)
タイトルとURLをコピーしました