正則化パラメータ

アルゴリズム:Algorithms

保護中: アトミックノルムによるスパース機械学習の数学的性質と最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアトミックノルムによるスパース機械学習の数学的性質と最適化(L∞ノルム、双対問題、ロバスト主成分分析、前景画像抽出、低ランク行列、スパース行列、ラグランジュ乗数、補助変数、拡張ラグランジュ関数、指示関数、スペクトルノルム、ロバスト主成分分析、フランク・ウォルフェ法、双対における交互乗数法、L1ノルム制約付き二乗回帰問題、正則化パラメータ、経験誤差、曲率パラメータ、アトミックノルム、prox作用素、凸包、ノルムの等価性、双対ノルム)
アルゴリズム:Algorithms

保護中: トレースノルム正則化に基づくスパース機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるトレースノルム正則化に基づくスパース機械学習(PROPACK、ランダム射影、特異点分解、低ランク、スパース行列、近接勾配の更新式、協調フィルタリング、特異値ソルバー、トレースノルム、prox作用、正則化パラメータ、特異値、特異ベクトル、加速付き近接勾配法、トレースノルム正則化付き学習問題、半正定行列、行列の平方根、フロベニウスノルム、フロベニウスノルム二乗正則化、トーレスノルム最小化、2値分類問題、マルチタスク学習、グループL1ノルム、推薦システム)
アルゴリズム:Algorithms

保護中: 統計数学理論によるν-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるν-サポートベクトルマシンの概要(カーネル関数、有界性、経験マージン判別誤差、バイアス項なしモデル、再生核ヒルベルト空間、予測判別誤差、一様バウンド、統計的一致性、C-サポートベクトルマシン、対応関係、統計モデルの自由度、双対問題、勾配降下、最小距離問題、判別境界、幾何学的解釈、2値判別、経験マージン判別誤差、経験判別誤差、正則化パラメータ、ミニマックス定理、グラム行列、ラグランジュ関数)
アルゴリズム:Algorithms

保護中: 統計数学理論によるC-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるサポートベクトルマシン C-サポートベクトルマシン(サポートベクトル比、マルコフの不等式、確率不等式、予測判別誤差、1つ抜き交差確認法、LOOCV、判別器、相補性条件、主問題、双対問題、最適解、1次凸最適化問題、判別境界、判別関数、ラグランジュ関数、極限条件、スレイター制約想定、ミニマックス定理、グラム行列、ヒンジ損失、マージン損失、凸関数、ベイズ誤差、正則化パラメータ)
スパースモデリング

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(1)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(マルコフの不等式、ヘフディングの不等式、ベルシュタインの不等式、カイ二乗分布、裾確率、ユニオンバウンド、ブールの不等式、L∞ノルム、多次元ガウススペクトル、ノルムの互換性、正規分布、スパースベクトル、双対ノルム、コーシー・シュワルツの不等式、ヘルダーの不等式、回帰係数ベクトル、閾値、kスパース、正則化パラメータ、劣ガウス雑音)
アルゴリズム:Algorithms

保護中: モデル選択と正則化パス追跡(1) 交差検証法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるサポートベクトルマシンの正則化パラメータ等のハイパーパラメータを選択するための交差検証法(k分割交差検証法、一つ抜き交差検証法)について
タイトルとURLをコピーしました