確率的最適化

アルゴリズム:Algorithms

保護中: 確率的最適化における凸解析の基本事項(1)凸関数と劣微分、双対関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的最適化における凸解析の基本事項での凸関数と劣微分、双対関数(凸関数、共役関数、ヤング・フェンシェルの不等式、劣微分、ルジャンドル変換、劣勾配、L1ノルム、相対的内点、アフィン包、アフィン集合、閉包、エピグラフ、凸包、平滑凸関数、狭義凸関数、真凸閉関数、閉凸閉関数、実行定義域、凸集合)
アルゴリズム:Algorithms

保護中: 勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法、確率的最適化、多層パーセプトロン、アダブースト、ブースティング、ウルフ条件、ゾーテンダイク条件、アルミホ条件、バックトラッキング法、ゴールドシュタイン条件、強ウルフ条件)
アルゴリズム:Algorithms

保護中: 機械学習のためのオンライン型確率的最適化と確率的勾配降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスク活用のための機械学習のための確率的最適化と確率的勾配降下法(ネステロフの加速法、凸関数の最適化を勾配法で解く、ラグランジュの未定乗数法、ユークリッドノルム、収束レート、KLダイバージェンス、指数勾配降下法、ニュートン・ラフソン法、ブレグマンダイバージェンス、確率的鏡像降下法、狭義凸関数、リプシッツ連続、損失関数、射影勾配法、SGD、コーシー・シュワルツの不等式、ミニマックス最適、最急降下法)
アルゴリズム:Algorithms

保護中: 確率的最適化とオンライン最適化の概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに用いられる確率的最適化とオンライン最適化の概要(期待誤差、リグレット、ミニマックス最適、強凸損失関数、確率的勾配降下法、確率的双対平均化法、AdaGrad、オンライン型確率的最適化、バッチ型確率的最適化)
アルゴリズム:Algorithms

確率的最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される大量データの大規模学習問題を解くための確率的最適化の諸手法(教師あり学習と正則化,凸解析の基本事項,確率的最適化とは,オンライン型確率的最適化,バッチ型確率的最適化,分散環境での確率的最適化)
タイトルとURLをコピーしました