L1ノルム

アルゴリズム:Algorithms

保護中: アトミックノルムによるスパース機械学習の定義と具体例

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアトミックノルムによるスパース機械学習での定義と具体例(テンソルの核型ノルム、nuclear norm、高階テンソル、トレースノルム、K階テンソル、アトム集合、汚いモデル、dirty model、マルチタスク学習、制約なし最適化問題、ロバスト主成分分析、L1ノルム、グループL1ノルム、L1誤差項、ロバスト統計、フロベニウスノルム、外れ値推定、重複のあるグループ正則化、アトム集合の和集合、ベクトルの要素単位のスパース性、グループ単位のスパース性、行列の低ランク性)
アルゴリズム:Algorithms

保護中: 確率的最適化における凸解析の基本事項(1)凸関数と劣微分、双対関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的最適化における凸解析の基本事項での凸関数と劣微分、双対関数(凸関数、共役関数、ヤング・フェンシェルの不等式、劣微分、ルジャンドル変換、劣勾配、L1ノルム、相対的内点、アフィン包、アフィン集合、閉包、エピグラフ、凸包、平滑凸関数、狭義凸関数、真凸閉関数、閉凸閉関数、実行定義域、凸集合)
アルゴリズム:Algorithms

保護中: L1ノルム正則化のための最適化手法としての双対拡張ラグランジュ法・双対交互方向乗数法

デジタルトランスフォーメーショ(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース学習でのL1ノルム正則化のための最適化手法(FISTA、SpaRSA、OWLQN、DL法、L1ノルム、チューニング、アルゴリズム、DADMM、IRS、ラグランジュ乗数、近接点法、交互方向乗数法、勾配上昇法、拡張ラグランジュ法、ガウス・サイデル法、連立一次方程式、制約付きノルム最小化問題、コレスキー分解、交互方向乗数法、双対拡張ラグランジュ法、相対双対ギャップ、ソフト閾値関数、へシアン行列)
アルゴリズム:Algorithms

保護中: スパース学習モデルのための L1ノルム正則化のための最適化手法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用するためのスパース学習モデルのための L1ノルム正則化のための最適化手法(近接勾配法、forward-backward splitting、iterative-shrinkage threshholding(IST)、加速付き近接勾配法、アルゴリズム、prox作用素、正則化項、微分可能、二乗誤差関数、ロジスティック損失関数、繰り返し重み付き縮小法、凸共役、へシアン行列、最大固有値、2階微分可能、ソフト閾値関数、L1ノルム、L2ノルム、リッジ正則化項、η-トリック)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度(グラム行列、仮説集合、判別境界、過剰適合、マージン損失、判別関数、予測半正定値、普遍カーネル、再生核ヒルベルト空間、予測判別誤差、L1ノルム、ガウスカーネル、指数カーネル、2項カーネル、コンパクト集合、経験ラデマッハ複雑度、ラデマッハ複雑度、表現定理)
アルゴリズム:Algorithms

保護中: 何がスパース性を誘発して、どのような問題にスパース性は適しているのか?

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース学習に対する何がスパース性を誘発して、どのような問題にスパース性は適しているのか?について(交互方向乗数法、スパース正則化、主問題、双対問題、双対拡張ラグランジュ法、DAL法、SPAMS、sparse modeling software、バイオインフォマティス、画像雑音除去、アトミックノルム、L1ノルム、トレースノルム、非ゼロ要素の数)
タイトルとURLをコピーしました