人工知能:Artificial Intelligence

アルゴリズム:Algorithms

保護中: 統計数学理論によるC-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるサポートベクトルマシン C-サポートベクトルマシン(サポートベクトル比、マルコフの不等式、確率不等式、予測判別誤差、1つ抜き交差確認法、LOOCV、判別器、相補性条件、主問題、双対問題、最適解、1次凸最適化問題、判別境界、判別関数、ラグランジュ関数、極限条件、スレイター制約想定、ミニマックス定理、グラム行列、ヒンジ損失、マージン損失、凸関数、ベイズ誤差、正則化パラメータ)
アルゴリズム:Algorithms

保護中: オンライン型確率的最適化の分散処理

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるオンライン型確率的最適化の分散処理(期待誤差、ステップサイズ、エポック、強凸期待誤差、SGD、リプシッツ連続、γ-平滑、α-強凸、Hogwild!、並列化、ラベル伝搬法、グラフ上での伝搬、スパースな特徴ベクトル、非同期型分散SGD、ミニバッチ法、確率的最適化手法、勾配の分散、不偏推定量、SVRG、勾配法のミニバッチ並列化、ネステロフの加速法、並列化SGD)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての共役勾配法と非線形共役勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての共役勾配法と非線形共役勾配法(モーメント法、非線形共役勾配法、探索方向、慣性項、Polak-Ribiere法、直線探索、ウルフ条件、Dai-Yuan法、強ウルフ条件、Fletcher-Reeves法、大域的収束性、ニュートン法、急速降下法、ヘッセ行列、凸2次関数、共役勾配法、最小固有値、最大固有値、アフィン部分空間、共役方向法、座標降下法)
アルゴリズム:Algorithms

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(2)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(数値解析例、ヒートマップ、人工データ、制限強凸性、制限等長性、kスパースベクトル、ノルムの独立性、劣微分、凸関数、回帰係数ベクトル、直交補空間)
アルゴリズム:Algorithms

様々な強化学習技術の理論とアルゴリズムとpythonによる実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される様々な強化学習技術の理論とアルゴリズムとpythonによる実装(強化学習,オンライン学習,オンライン予測,深層学習,python,アルゴリズム,理論,実装)
ICT技術:ICT Technology

機械学習技術について

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに活用される機械学習技術について
推論技術:inference Technology

保護中: 説明できる人工知能(11)モデル非依存の解釈(Permutation Feature Importance)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用可能な説明できる機械学習での後付け解釈モデル、モデル非依存解釈手法のうちの一つPermutation Feature Importance
python

保護中: 強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 価値評価に深層学習を適用するDeep Q-Network(Prioritized Replay、Multi-step Learning、Distibutional RL、Noisy Nets、Double DQN、Dueling Network、Rainbow、GPU、Epsilon-Greedy法、optimizer、報酬のClipping、Fixed Target Q-Network、Experience Replay、平均二乗誤差、mean squared error、TD誤差、PyGame Learning Enviroment、PLE、OpenAI Gym、CNN)
Clojure

保護中: Clojureを用いたGraphX Pregelでのネットワーク解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureを用いたGraphX Pregelでのネットワーク解析(ラベル伝搬、twitterデータ、コミュニティ分析、グラフ構造分析、コミュニティサイズ、コミュニティ検出、アルゴリズム、最大連結成分、トライアングルカウント、Glittering、Google、ケーニヒスベルクの橋、オイラー路)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習の例:ポアソン混合モデルのギブスサンプリングによる推論(アルゴリズム、未観測変数のサンプリング、ディリクレ分布、ガンマ分布、条件付き分布、カテゴリ分布、事後分布、同時分布、超パラメータ、知識モデル、データ発生過程、潜在変数)
タイトルとURLをコピーしました